SoK: So, You Think You Know All About Secure Randomized Caches?

USENIX Security 2025 Track 4: Thursday, August 14, 2025

Anubhav Bhatla Hari Rohit Bhavsar

Sayandeep Saha Biswabandan Panda

Indian Institute of Technology (IIT), Bombay

Background

Speed: Registers > Cache > RAM

Background

among all processes

Cache hierarchy in modern processors

Website Fingerprinting [USENIX SECURITY '19]

PRIME+PROBE [S&P '15]

Popular Secure Randomized Designs

Randomization + Remapping

Popular Secure Randomized Designs

Randomization + Remapping

Skews + Randomization + Remapping

Popular Secure Randomized Designs

Randomization + Remapping

Data Store

Global random eviction

Tag Store Pointer-based mapping Set associative lookup in tag store

Skews (load-aware) + Randomization + Extra Invalid Tags (decoupled) + Global **Random Eviction**

MIRAGE [USENIX SECURITY '20] MAYA [ISCA '24]

Overview

We systematize the design space for secure randomized caches by identifying key security knobs

We perform security analysis of each knob against conflict-based attacks.

We also study which combinations of these knobs work

We analyze these knobs against full- and low-occupancy-based attacks and compare them with partitioning-based designs

Security Knobs

- Identified various knobs and sub-knobs used in modern secure randomized caches
- Randomization using block cipher is assumed by default

METRIC I: Eviction Rate

METRIC II: Ease of Eviction Set Creation

METRIC I: Eviction Rate

Measures the probability (or rate) of evicting the target address using a perfect eviction set

ScatterCache [USENIX Security '19]
Song et al. [S&P '21]
ClepsydraCache [USENIX Security '23]

METRIC II: Ease of Eviction Set Creation

METRIC I: Eviction Rate

Measures the probability (or rate) of evicting the target address using a perfect eviction set

Loop start

- 1. Select random target x
- 2. Generate eviction set E for x
- 3. Access x
- 4. Access E
- 5. Check whether x is evicted end

METRIC II: Ease of Eviction Set Creation

METRIC I: Eviction Rate

Measures the probability (or rate) of evicting the target address using a perfect eviction set

Loop start

- 1. Select random target x
- 2. Generate eviction set E for x
- 3. Access x
- 4. Access E
- 5. Check whether x is evicted end

METRIC II: Ease of Eviction Set Creation

Quantify in terms of number of LLC
evictions needed to create a
fixed-size eviction set

We test popular algorithms such as Conflict Testing and Prime, Prune and Probe (PPP)

Random Skew Selection

Load-aware Skew Selection

Skewing helps improve security

LA does better than Random

Skewing helps improve security

There are hidden nuances to consider!

LA does better than Random

Eviction Strategy

Decoupling

Eviction Strategy

Decoupling

Decoupling has no security impact

Extra invalid tags can improve security, but they need to be coupled with appropriate knobs and sub knobs

Knob 3: High Associativity

Knob 3: High Associativity

High associativity provides significant security gains, even with just two skews.

Knob 3: High Associativity

High associativity provides significant security gains, even with just two skews.

Knob 4: Replacement Policy

Knob 4: Replacement Policy

Random performs worse than LRU and RRIP

Knob 4: Replacement Policy

Random performs worse than LRU and RRIP

GRPLRU performs similarly to GLRU, while being more practical

Knob 5: Remapping

Knob 5: Remapping

Conflict Testing is faster than PPP

Knob 5: Remapping

High associativity designs have higher remapping periods compared to CEASER-S and Skew-16. Inv + LA + GE improves this further.

Only partitioning-based mitigations are effective

Random provides better security than deterministic policies

Chakraborty et al. ⇒ Global eviction-based design are vulnerable to low-occupancy attacks

Only partitioning works

Only partitioning works

Full-occupancy: random > deterministic

Full-occupancy: local ~ global eviction

Low-occupancy: local > global eviction

Loop start

- 1. Select random target x
- 2. Generate eviction set E for x
- 3. Access x
- 4. Access E
- 5. Check whether x is evicted end

Shows the effect of average cache warm-up state

Loop start

- 1. Reset cache warm-up state
- 2. Select random target x
- 3. Generate eviction set E for x
- 4. Access x
- 5. Access E
- 6. Check whether x is evicted end

Loop start

- 1. Reset cache warm-up state
- 2. Select random target x
- 3. Generate eviction set E for x
- 4. Access x
- 5. Access E
- 6. Check whether x is evicted end

Why not use this technique by default?

Loop start

- 1. Reset cache warm-up state
- 2. Select random target x
- 3. Generate eviction set E for x
- 4. Access x
- 5. Access E
- 6. Check whether x is evicted end

Why not use this technique by default?

>10x slower than the original

Cache warm-up state has a significant impact on security

Cache warm-up state has a significant impact on security

Evaluating Design Trade-offs

Security

Knobs Used

Performance

Logic

Power

Design	LLC Evictions Needed to Create Eviction Set	Knobs Used	Performance Overhead	Logic Overhead	Dynamic Power Overhead	Static Power Overhead
Skew-2 (CEASER-S)	0.5 million	Skews, Remapping	-1.3%	1.9%	2.5%	2%
Skew-16 (ScatterCache)	2.8 million	Large number of skews, Remapping	0.1%	1.7%	0.5%	1.4%
Skew-2-LA-Inv2-GLRU	2.3 million	Skews, Load-aware, Invalid Tags, Global Eviction, Remapping	1.3%	1.9%	5.2%	2%
Mirage	Not Possible	Skews, Load-aware, Invalid Tags, Global Eviction	0.2%	18.6%	-0.2%	19.6%
Skew-2-Ass64	3.8 million	Skews, High Associativity, Remapping	-2.1%	2.3%	1.8%	3.3%
Skew-2-Ass128	7.9 million	Skews, High Associativity, Remapping	-2.2%	2.4%	1.7%	6.4%
Skew-2-Ass64-LA-Inv2-GLRU	6.1 million	Skews, High Associativity, Load-aware, Invalid Tags, Global Eviction, Remapping	-2.2%	2.3%	1.8%	3.3%
Skew-2-Ass128-LA-Inv2-GLRU	11.0 million	Skews, High Associativity, Load-aware, Invalid Tags, Global Eviction, Remapping	-2.5%	2.5%	1.7%	6.4%
SassCache (coverage = 39%)	Not Possible	Skews, Soft Partitioning	2.3%	2.4%	7.4%	1.2%

Thank You!

