
USENIX Security 2025 Track 4: Thursday, August 14, 2025

SoK: So, You Think You Know All
About Secure Randomized Caches?

CASPER SHArC

Anubhav Bhatla Hari Rohit Bhavsar
Sayandeep Saha Biswabandan Panda

Indian Institute of Technology (IIT), Bombay

Background

2

Size: Registers < Cache < RAM
Speed: Registers > Cache > RAM

Background

3

L1

L1D

L2

Core 0

L1

Core 1

Last-Level Cache (LLC)

Cache hierarchy in modern processors

L2

L1I L1DL1I

LLC is shared
among all
processes

4

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

VICTIM
PROCESS

Occupancy-based Attacks

Website Fingerprinting
[USENIX SECURITY ‘19]

5

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

VICTIM
PROCESS

Occupancy-based Attacks

Spy accesses
cache-sized buffer

repeatedly

Victim runs its
sensitive process

Website Fingerprinting
[USENIX SECURITY ‘19]

6

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

Attacker can now decipher
victim LLC occupancy and
leak sensitive information

VICTIM
PROCESS

Occupancy-based Attacks

Spy accesses
cache-sized buffer

repeatedly

Victim runs its
sensitive process

More accesses to the buffer
⇒ Less victim LLC occupancy

Website Fingerprinting
[USENIX SECURITY ‘19]

7

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

VICTIM
PROCESS

Occupancy-based Attacks

Spy accesses
cache-sized buffer

repeatedly

Victim runs its
sensitive process

Chakraborty et al.
[USENIX SECURITY ‘25]

8

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

VICTIM
PROCESS

Occupancy-based Attacks

Spy accesses
cache-sized buffer

repeatedly

Victim runs its
sensitive process

Chakraborty et al.
[USENIX SECURITY ‘25]

Buffer size as small as 10% cache size.
Low-occupancy-based attacks

9

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

PRIME+PROBE
[S&P ‘15]

VICTIM
PROCESS

Conflict-based Attacks

10

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

PRIME+PROBE
[S&P ‘15]

VICTIM
PROCESS

Conflict-based Attacks

A B

A and B form
an eviction set

11

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

PRIME+PROBE
[S&P ‘15]

VICTIM
PROCESS

Conflict-based Attacks

A BV

B

Secret
Dependent

12

L2-Cache

L1-Cache

CORE-0

L2-Cache

L1-Cache

CORE-1

SPY
PROCESS

Last Level Cache

A cache miss results in a
timing difference in
access due to high

DRAM latency

PRIME+PROBE
[S&P ‘15]

VICTIM
PROCESS

Conflict-based Attacks

A BV

B

Secret
Dependent

LLC Miss for B ⇒
Victim Accessed V

13

Popular Secure Randomized Designs

Rf
Incoming

Line

Randomization + Remapping

CEASER [MICRO ‘18]

14

Popular Secure Randomized Designs

Rf
Incoming

Line

Randomization + Remapping

CEASER [MICRO ‘18]

Incoming
Line

Skews + Randomization + Remapping

CEASER-S [ISCA ‘19]
SCATTERCACHE [S&P ‘19]

Rf
2

Rf
1

15

Popular Secure Randomized Designs

Rf
Incoming

Line

Randomization + Remapping

CEASER [MICRO ‘18]

Incoming
Line

Skews + Randomization + Remapping

CEASER-S [ISCA ‘19]
SCATTERCACHE [S&P ‘19]

Rf
2

Rf
1

A

B C

B

C

A

Tag Store

Data Store

Set associative lookup in tag store

Pointer-based mapping

G
lo

b
al ran

d
o

m
 evictio

n

Skews (load-aware) +
Randomization + Extra Invalid

Tags (decoupled) + Global
Random Eviction

MIRAGE [USENIX SECURITY ‘20]
MAYA [ISCA ‘24]

16

Overview

We systematize the design space for secure randomized caches by
identifying key security knobs

We perform security analysis of each knob against conflict-based attacks.
We also study which combinations of these knobs work

We analyze these knobs against full- and low-occupancy-based
attacks and compare them with partitioning-based designs

17

Security Knobs

● Identified various knobs and sub-knobs used in modern secure randomized caches

● Randomization using block cipher is assumed by default

Knobs

Skewing Extra
Invalid Tags

(Inv)

Replacement
Policy

RemappingHigh
Associativity

(Ass)

Random skew
selection

(RS)

Load-aware
skew selection

(LA)
DecouplingEviction

strategy

Local eviction
(LE)

Global eviction
(GE)

Re-Reference
Interval

Prediction
(RRIP)

Randomized
Pseudo Least

Recently Used
(RPLRU)

Random
(Ran)

Least
Recently

Used
(LRU)

18

Metrics Used

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set

Creation

ScatterCache [USENIX Security ‘19]
Song et al. [S&P ‘21]

ClepsydraCache [USENIX Security ‘23]

19

Metrics Used

Measures the probability (or rate) of
evicting the target address using a

perfect eviction set

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set

Creation

ScatterCache [USENIX Security ‘19]
Song et al. [S&P ‘21]

ClepsydraCache [USENIX Security ‘23]

20

Metrics Used

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Measures the probability (or rate) of
evicting the target address using a

perfect eviction set

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set

Creation

ScatterCache [USENIX Security ‘19]
Song et al. [S&P ‘21]

ClepsydraCache [USENIX Security ‘23]

21

Metrics Used

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Measures the probability (or rate) of
evicting the target address using a

perfect eviction set

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set

Creation

Quantify in terms of number of LLC
evictions needed to create a

fixed-size eviction set

We test popular algorithms such as
Conflict Testing and Prime, Prune and

Probe (PPP)

22

Knob 1: Skewing

Random
Skew Selection

Load-aware
Skew Selection

23

Knob 1: Skewing

24

Knob 1: Skewing

LA does better
than Random

Skewing helps
improve security

25

Knob 1: Skewing

There are hidden nuances to consider!
LA does better
than Random

Skewing helps
improve security

Eviction Strategy

26

Knob 2: Extra Invalid Tags

Decoupling

Eviction Strategy Decoupling

Decoupling has no
security impact

27

Knob 2: Extra Invalid Tags

Local Eviction

Global Eviction
Eviction Strategy

28

Knob 2: Extra Invalid Tags

29

Knob 2: Extra Invalid Tags

30

Knob 2: Extra Invalid Tags

31

Knob 2: Extra Invalid Tags

32

Knob 2: Extra Invalid Tags

Skew + LA + Inv ❌

33

Knob 2: Extra Invalid Tags

Skew + LA + Inv ❌ Skew + Inv + GE ❌

34

Knob 2: Extra Invalid Tags

Skew + LA + Inv ❌ Skew + Inv + GE ❌

Extra invalid tags can improve
security, but they need to be coupled

with appropriate knobs and sub knobs

35

Knob 3: High Associativity

36

Knob 3: High Associativity

High associativity provides significant
security gains, even with just two skews.

37

Knob 3: High Associativity

High associativity provides significant
security gains, even with just two skews.

38

Knob 4: Replacement Policy

RRIP Ran LRU RPLRU

39

Knob 4: Replacement Policy

Random performs worse
than LRU and RRIP

40

Knob 4: Replacement Policy

GRPLRU performs similarly to
GLRU, while being more practical

Random performs worse
than LRU and RRIP

41

Knob 5: Remapping

Number of LLC
Evictions

Conflict Testing

Prime, Prune, and Probe

42

Knob 5: Remapping

Number of LLC
Evictions

Conflict Testing

Prime, Prune, and Probe

Conflict Testing is
faster than PPP

43

Knob 5: Remapping

Conflict Testing is
faster than PPP

High associativity designs have higher remapping periods compared to CEASER-S
and Skew-16. Inv + LA + GE improves this further.

44

Evaluation against Occupancy Attacks

Only partitioning-based mitigations are effective
45

Evaluation against Occupancy Attacks

Only partitioning-based mitigations are effectiveRandom provides better security than deterministic policies
46

Evaluation against Occupancy Attacks

Only partitioning-based mitigations are effectiveRandom provides better security than deterministic policiesChakraborty et al. ⇒ Global eviction-based design are vulnerable to low-occupancy attacks
47

Evaluation against Occupancy Attacks

48

Evaluation against Occupancy Attacks

Only partitioning works

49

Evaluation against Occupancy Attacks

Full-occupancy: random > deterministic

Full-occupancy: local ~ global eviction

Low-occupancy: local > global eviction

Only partitioning works

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

50

Impact of Warm-up State

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Cache initialized
as empty

51

Impact of Warm-up State

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Cache state
continues from

previous iteration

Cache initialized
as empty

52

Impact of Warm-up State

Shows the effect
of average cache

warm-up state

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Cache state
continues from

previous iteration

Cache initialized
as empty

53

Impact of Warm-up State

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Loop start
1. Reset cache warm-up state
2. Select random target x
3. Generate eviction set E for x
4. Access x
5. Access E
6. Check whether x is evicted
end

54

Impact of Warm-up State

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Loop start
1. Reset cache warm-up state
2. Select random target x
3. Generate eviction set E for x
4. Access x
5. Access E
6. Check whether x is evicted
end

55

Impact of Warm-up State

Why not use this technique by default?

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Loop start
1. Reset cache warm-up state
2. Select random target x
3. Generate eviction set E for x
4. Access x
5. Access E
6. Check whether x is evicted
end

56

Impact of Warm-up State

Why not use this technique by default?Why not use this technique by default?
>10x slower than the original

57

Impact of Warm-up State

Cache warm-up state has a significant impact on security

58

Impact of Warm-up State

Cache warm-up state has a significant impact on security

Evaluating Design Trade-offs

59

Security Knobs Used Performance Logic Power

Evaluating Design Trade-offs

60

Security Knobs Used Performance Logic Power

Thank You!

61Supported by TrustLab, IIT Bombay

