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Size: Registers < Cache < RAM
Speed: Registers > Cache > RAM
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Buffer size as small as 10% cache size. 
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Popular Secure Randomized Designs
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Popular Secure Randomized Designs
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Overview

We systematize the design space for secure randomized caches by 
identifying key security knobs

We perform security analysis of each knob against conflict-based attacks. 
We also study which combinations of these knobs work

We analyze these knobs against full- and low-occupancy-based 
attacks and compare them with partitioning-based designs
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Security Knobs

● Identified various knobs and sub-knobs used in modern secure randomized caches

● Randomization using block cipher is assumed by default

Knobs

Skewing Extra 
Invalid Tags

(Inv)

Replacement 
Policy

RemappingHigh
Associativity
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Random skew
selection
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Load-aware 
skew selection
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DecouplingEviction

strategy

Local eviction
(LE)

Global eviction
(GE)

Re-Reference
Interval

Prediction
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Randomized
Pseudo Least

Recently Used
(RPLRU)

Random
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Recently 
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Metrics Used

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set 

Creation



ScatterCache [USENIX Security ‘19]
Song et al. [S&P ‘21]

ClepsydraCache [USENIX Security ‘23]
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Metrics Used

Measures the probability (or rate) of 
evicting the target address using a 

perfect eviction set

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set 

Creation



ScatterCache [USENIX Security ‘19]
Song et al. [S&P ‘21]

ClepsydraCache [USENIX Security ‘23]
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Metrics Used

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Measures the probability (or rate) of 
evicting the target address using a 

perfect eviction set

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set 

Creation



ScatterCache [USENIX Security ‘19]
Song et al. [S&P ‘21]

ClepsydraCache [USENIX Security ‘23]
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Metrics Used

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Measures the probability (or rate) of 
evicting the target address using a 

perfect eviction set

METRIC I:
Eviction Rate

METRIC II:
Ease of Eviction Set 

Creation

Quantify in terms of number of LLC 
evictions needed to create a 

fixed-size eviction set

We test popular algorithms such as 
Conflict Testing and Prime, Prune and 

Probe (PPP)
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Knob 1: Skewing

Random
Skew Selection

Load-aware
Skew Selection
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Knob 1: Skewing
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Knob 1: Skewing

LA does better 
than Random

Skewing helps 
improve security
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Knob 1: Skewing

There are hidden nuances to consider!
LA does better 
than Random

Skewing helps 
improve security



Eviction Strategy
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Knob 2: Extra Invalid Tags

Decoupling



Eviction Strategy Decoupling

Decoupling has no 
security impact
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Knob 2: Extra Invalid Tags



Local Eviction

Global Eviction
Eviction Strategy
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Knob 2: Extra Invalid Tags
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Knob 2: Extra Invalid Tags
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Knob 2: Extra Invalid Tags
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Knob 2: Extra Invalid Tags
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Knob 2: Extra Invalid Tags

Skew + LA + Inv ❌
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Knob 2: Extra Invalid Tags

Skew + LA + Inv ❌ Skew + Inv + GE ❌
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Knob 2: Extra Invalid Tags

Skew + LA + Inv ❌ Skew + Inv + GE ❌

Extra invalid tags can improve 
security, but they need to be coupled 

with appropriate knobs and sub knobs
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Knob 3: High Associativity
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Knob 3: High Associativity

High associativity provides significant 
security gains, even with just two skews. 
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Knob 3: High Associativity

High associativity provides significant 
security gains, even with just two skews. 
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Knob 4: Replacement Policy

RRIP Ran LRU RPLRU
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Knob 4: Replacement Policy

Random performs worse 
than LRU and RRIP
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Knob 4: Replacement Policy

GRPLRU performs similarly to 
GLRU, while being more practical

Random performs worse 
than LRU and RRIP
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Knob 5: Remapping

Number of LLC 
Evictions

Conflict Testing

Prime, Prune, and Probe
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Knob 5: Remapping

Number of LLC 
Evictions

Conflict Testing

Prime, Prune, and Probe

Conflict Testing is 
faster than PPP
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Knob 5: Remapping

Conflict Testing is 
faster than PPP

High associativity designs have higher remapping periods compared to CEASER-S 
and Skew-16. Inv + LA  + GE improves this further.
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Evaluation against Occupancy Attacks



Only partitioning-based mitigations are effective
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Evaluation against Occupancy Attacks



Only partitioning-based mitigations are effectiveRandom provides better security than deterministic policies
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Evaluation against Occupancy Attacks



Only partitioning-based mitigations are effectiveRandom provides better security than deterministic policiesChakraborty et al. ⇒ Global eviction-based design are vulnerable to low-occupancy attacks
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Evaluation against Occupancy Attacks
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Evaluation against Occupancy Attacks

Only partitioning works
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Evaluation against Occupancy Attacks

Full-occupancy: random > deterministic

Full-occupancy: local ~ global eviction

Low-occupancy: local > global eviction

Only partitioning works



Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end
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Impact of Warm-up State



Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Cache initialized 
as empty
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Impact of Warm-up State



Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Cache state 
continues from 

previous iteration

Cache initialized 
as empty
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Impact of Warm-up State



Shows the effect 
of average cache 

warm-up state

Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Cache state 
continues from 

previous iteration

Cache initialized 
as empty
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Impact of Warm-up State



Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Loop start
1. Reset cache warm-up state
2. Select random target x
3. Generate eviction set E for x
4. Access x
5. Access E
6. Check whether x is evicted
end
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Impact of Warm-up State
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Impact of Warm-up State

Why not use this technique by default?



Loop start
1. Select random target x
2. Generate eviction set E for x
3. Access x
4. Access E
5. Check whether x is evicted
end

Loop start
1. Reset cache warm-up state
2. Select random target x
3. Generate eviction set E for x
4. Access x
5. Access E
6. Check whether x is evicted
end
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Impact of Warm-up State

Why not use this technique by default?Why not use this technique by default?
>10x slower than the original
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Impact of Warm-up State

Cache warm-up state has a significant impact on security
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Impact of Warm-up State

Cache warm-up state has a significant impact on security



Evaluating Design Trade-offs
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Security Knobs Used Performance Logic Power



Evaluating Design Trade-offs
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Security Knobs Used Performance Logic Power



Thank You!
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