
SoK: So, You Think You Know All About Secure Randomized Caches?

Anubhav Bhatla∗

bhatlaanubhav2001@gmail.com
Indian Institute of Technology Bombay

Hari Rohit Bhavsar∗

haribhavsar@cse.iitb.ac.in
Indian Institute of Technology Bombay

Sayandeep Saha
sayandeepsaha@cse.iitb.ac.in

Indian Institute of Technology Bombay

Biswabandan Panda
biswa@cse.iitb.ac.in

Indian Institute of Technology Bombay

Abstract
Over the past decade, numerous side-channel attacks on

shared resources, such as the Last-Level Cache (LLC), have
exposed security risks in the form of flush-based, conflict-
based, and occupancy-based attacks, driving the development
of secure cache designs. To defend against conflict-based
attacks, which is one of the most effective classes of side-
channel attacks, many modern designs randomize LLC set
indexing to hinder eviction set construction. Various random-
ized cache designs have been proposed recently, offering dis-
tinct security guarantees. While these designs incorporate
several microarchitectural modifications (we call them se-
curity knobs) over the conventional set-associative cache to
ensure security, the individual impact of these microarchitec-
tural modifications has never been evaluated. This leaves a
gap in the understanding of randomized LLCs – the design
space has not been explored completely and systematically.

In this SoK, we identify and systematically analyze the
design knobs employed in state-of-the-art secure random-
ized cache designs that mitigate conflict-based attacks. Using
conventional set-associative caches as our baseline, we study
five key knobs: skewing, extra invalid tags, high associativity,
replacement policy, and remapping. We also evaluate their
impact on occupancy-based attacks. Our findings show that
no single knob provides a comprehensive security guarantee.
Instead, only specific combinations of knobs yield effective
protection, while others offer little to no security benefit.

1 Introduction

Last-level Cache (LLC) hides off-chip memory access la-
tency and improves system performance. Typically, L1 and
L2 caches are dedicated to each core, while the shared LLC
serves all cores. However, this shared LLC can facilitate
side-channel attacks that may reveal sensitive data, such as
cryptographic keys [5, 10, 23], user data in the cloud [16],

*These authors contributed equally to this work

and architecture of neural networks [44]. Three types of at-
tacks are possible in set-associative LLCs: flush-based [46],
conflict-based [23] and occupancy-based [32]. In general,
these attacks exploit the timing difference between an LLC
hit (fast) and a miss (slow). Flush-based attacks are shared
memory attacks where the attacker and the victim share cache
lines, and the attacker flushes the cache line from the LLC
and checks for LLC hit and miss. A future reload hit means
the victim has filled the cache line into the LLC. In contrast,
conflict-based [23] and occupancy-based [32] attacks do not
expect shared memory. Conflict-based attackers exploit LLC
address-to-set mapping, causing set conflicts where victim
lines evict attacker lines, known as a set-associative eviction
(SAE). Attackers use SAEs to build an eviction set, a col-
lection of addresses that map to the same LLC set. Another
class of attacks, called occupancy attacks, involves occupying
cache lines to estimate the proportion accessed by a victim
process [32]. Occupancy attacks do not need eviction sets.

In recent years, several defense mechanisms have been
proposed to counter these attacks, among which LLC ran-
domization has emerged as a promising candidate for flush
and conflict-based attacks, and recently for occupancy-based
attacks [18]. There have been several proposals for a ran-
domized LLC design. Some of the initial proposals such as
RPCache [42], CEASER [28], CEASER-S [29], and Scatter-
Cache [43] were quickly compromised by newer and faster
attacks [25, 29, 34], and eventually improved designs were
proposed. Recent secure randomized LLC designs, such as
Mirage [30], introduce multiple microarchitectural modifi-
cations to a conventional set-associative cache to provide
security. However, the security guarantee of each of these
designs is usually evaluated as a whole, without clarifying
the role of each microarchitectural modification. Secondly,
many of the designs propose similar modifications or identi-
cal security implications. Therefore, it is crucial to identify
the set of security “knobs” or modifications used by these
designs. We identify, evaluate, and provide a taxonomy of
five knobs, both in isolation and in combination. The knobs
of interest are: (i) skewing, (ii) extra invalid tags, (iii) high

1

associativity, (iv) replacement policy, and (v) remapping. We
introduce high associativity as a knob in this study and argue
its effectiveness in enhancing security. Even though cache
associativity has previously been evaluated [17] in the context
of security, no prior work has evaluated high associativity as
a security knob. We quantify security using the two metrics
– i) eviction rate, defined as the probability that an eviction
set evicts the target address; and, ii) number of evictions to
generate an eviction set with real-world eviction set finding
algorithms. We iteratively analyze the impact of each knob
on the attacker’s achievable eviction rate, noting the condi-
tions under which each knob is effective and explaining why
it works. For the most promising knob combinations, we use
the second metric to make the evaluation stronger.

Through our evaluation, we answer questions such as (i)
why a security knob works and to what extent? and (ii) what is
a minimal set of knobs to secure a conventional set-associative
cache? This modular systematization enhances the under-
standing of randomized caches, helping designers and security
analysts select optimal designs. Several works have evaluated
randomized caches from different perspectives. CaSA [14]
developed a framework to quantitatively analyze the security
of randomized caches against covert channel attacks. Song et
al. [34] analyzed remapping periods for certain cache designs
exploiting design flaws. CacheFX [17] proposed a generic
framework for assessing cache resilience to side-channel at-
tacks. Our focus differs: we study the extra microarchitectural
features added for security, both individually and collectively.

Finally, occupancy-based attacks pose a significant threat
to cache security [12], and even complex designs like Mi-
rage [30] cannot fully mitigate them. Partitioning [4, 13] is an
effective defense but incurs a substantial performance penalty.
For randomized caches, only designs that use partitioning or
soft partitioning-based solutions [18, 20] can defend against
occupancy-based attacks. Moreover, the security of these de-
signs depends entirely on their partitioning properties. This
raises the question: Can the knobs proposed by secure ran-
domized cache designs mitigate occupancy-based attacks?

1.1 Key Insights and Contributions

The key insights and contributions of this paper are related
to randomized cache designs that primarily mitigate conflict-
based attacks. We also provide insights related to a recent
randomized cache that mitigates occupancy-based attacks.
Systematic evaluation of security knobs (Section 3). We
iteratively analyze the impact of each knob on the attacker’s
achievable eviction rate, noting the conditions needed for each
knob to be effective and explaining why it works. Combina-
tions of different security knobs are also explored, which gives
rise to some interesting designs not explored in prior literature.
One important insight is that certain knobs are dependent on
each other to provide security gains.
Decoupling has no effect on security (Section 3.3.1). We

argue that decoupling the tag and data store does not affect
the security of a cache design. Designs like Mirage [30] and
Maya [6] decouple the tag and data store to accommodate ex-
tra invalid tags in the tag store. The security of these designs
comes from the additional invalid tags, not from the decou-
pling itself, which primarily introduces overhead in terms of
indirection pointers and design complexity.
High associativity for security (Section 3.4). We identify
high associativity as a powerful knob for mitigating conflict-
based attacks. Our findings show that increasing cache asso-
ciativity significantly improves security with minimal changes
to conventional set-associative designs, making it a promising
direction for secure randomized caches. While associativity
up to 16 ways has been explored for security [17], we advo-
cate for extending beyond 16 ways, up to 128 ways.
Trade-off with occupancy-based attacks (Section 4). We
examine how various security features impact occupancy-
based attacks. First, we find that randomness in skew selec-
tion and eviction policy provides some protection, but it is
not foolproof. While deterministic eviction policies like LRU
are more effective against conflict-based attacks, they are
less effective for occupancy-based attacks. Second, in full
occupancy-based attacks, the eviction policy—global or lo-
cal—has minimal impact on security. We evaluate one recent
randomized cache design against occupancy-based attack,
which provides soft partitioning (e.g., SassCache [18]). Hard
partitioning is an ideal mitigation for occupancy-based at-
tacks (e.g., static way-based partitioning). Our results show
that SassCache makes such attacks significantly harder than
other randomized caches. We also analyze low-occupancy at-
tacks (attacks that use buffers smaller than cache capacity), by
extending prior evaluations [12] to high-associativity cache
designs, showing that they offer similar resistance to such
attacks as SassCache and ScatterCache.

2 Background

2.1 Threat Model

We assume the following capabilities in our attacker, which
is a standard threat model [6, 29, 30, 34, 43] for LLC attacks.

• The attacker and victim run on separate cores in a multi-
core system, sharing the LLC.

• The attacker has reverse-engineered the mapping from vir-
tual to physical addresses.

• The attacker can access the LLC by sending memory re-
quests to her own data but cannot access cache lines out-
side her address space. She can accurately probe the LLC
hit/miss status for her own data accesses.

• She can flush her cache blocks from the cache hierarchy.
• In the case of randomized caches, she knows the encryp-

tion algorithm, but the block cipher key for set mapping is
concealed.

2

A BSet 0

Set 1

A and B is accessed

A ZSet 0

Set 1

Z is accessed

B

B is evicted
because of a

conflict
A ZSet 0

Set 1

A and B are accessed

A is an LLC Hit
B is an LLC Miss
{A,B and Z} form
an "eviction set"1 2 3

(a) Generation of an eviction set

accesses A and B

A BSet 0

Set 1

1

if (secret):
 access X

A XSet 0

Set 1 B

2

accesses A and B

A XSet 0

Set 1

3

Attacker uses eviction
set to infer about an

LLC set and the secret
used by the victimPrime Probe

(b) An example of Prime+Probe attack

B is evicted
because of a

conflict

Figure 1: An overview of the steps involved in (a) generating an eviction set, and then using it to mount the (b) Prime+Probe [23]
conflict-based attack which leaks information about the victim’s secret-sensitive accesses.

2.2 LLC Side-Channel Attacks

In general, three kinds of LLC side channel attacks are preva-
lent that primarily exploit the latency (timing) difference be-
tween an LLC hit and a miss.
Conflict-based (or eviction-based) attacks. These attacks
depend on the attacker observing the eviction of its cache
lines due to addresses accessed by a victim, causing set
conflicts. As a first step, the attacker identifies an eviction
set (defined as a collection of addresses with a high degree
of contention within a subset of cache lines). For example,
such a subset of cache lines is constituted by an entire LLC
set for conventional set-associative caches. Figure 1(a) illus-
trates the process of generating such an eviction set for a
set-associative cache. Once the eviction set is established, the
attacker can launch a conflict-based side-channel attack, such
as Prime+Probe [23]. Figure 1(b) depicts a Prime+Probe at-
tack, where the spy first (1) primes (fills) an LLC set shared
with the victim, and then (2) the victim executes and po-
tentially evicts the spy’s cache lines, and finally (3) the spy
probes (checks) which lines were evicted to infer the victim’s
memory access behavior.
Occupancy-based attacks. These attacks rely on the attacker
observing changes in its LLC working set due to the victim’s
cache usage. For example, in website fingerprinting [32], the
attacker fills a significant portion of the LLC with its own
cache lines and then lets the victim execute. During the probe
step, the attacker can infer the victim’s LLC occupancy based
on evictions of its own lines. Unlike set-conflict-based attacks,
no eviction set is required for these attacks, but they lead to
more coarse-grained information leakage.
Shared memory-based (or flush-based) attacks. These at-
tacks depend on the attacker observing hits on addresses
shared with the victim. In the Flush+Reload [46] attack, the

attacker flushes a shared line from the cache and waits for
the victim to execute. In case the victim accessed the shared
line, the attacker can infer this during the reload step. These
shared lines usually consist of read-only shared memory from
shared libraries or memory shared through de-duplication by
the OS [45]. Such attacks are limited by the requirement of
sharing of cache lines between distrusting processes.

2.3 Scope
Our analysis focuses on randomized cache designs that miti-
gate conflict and occupancy-based side-channel attacks on the
LLC. We do not address flush-based attacks, as these attacks
are inherently mitigated by randomized cache designs that
include a security domain ID (SDID) per cache line, ensuring
no cross-SDID flushing of cache lines.

2.4 Eviction Set Creation Algorithms
For the rest of this paper, we abbreviate the number of sets in
the cache using S, the number of ways using W, and the size of
the cache using N. An eviction set is a collection of addresses
built to detect the access of a particular target (victim) address
or to evict the target (victim) from the cache. Such eviction
sets are constructed using some heuristics as discussed below.

To create an eviction set, most existing eviction set search
algorithms [21, 23, 29, 34] start from a large collection of
candidate addresses (called candidate set). Then, they filter
out addresses from this set that are congruent to this target
address, and therefore, can evict the target address. Two ad-
dresses are said to be congruent if they map to the same
subset of cache lines, and can evict each other with non-zero
probability. In case this eviction probability is one, we call
such addresses fully congruent. Otherwise, we say they are

3

partially congruent. The Single Holdout [23] method tests
one address at a time from the candidate set. It evaluates this
address by testing whether the other addresses in the candi-
date set still evict the target. If not, this address is included
in the eviction set, otherwise, it is excluded. This method
requires O(S2 ·W 2) or O(N2) cache accesses, which is too
slow to conduct any practical attacks. The Group Elimina-
tion [29] [41] method reduces the complexity to O(N ·W) or
O(S·W 2) accesses. They utilize the simple observation that
if the candidate set is divided into W + 1 groups, then one
group certainly does not contain any congruent address and,
therefore, can be removed. Conflict Testing [34], in contrast,
builds the eviction set by testing each address (instead of
starting from a candidate set) to check whether or not it is
congruent with the target address. The time complexity of
this algorithm is O(S·W 2).

In randomized caches, finding addresses that are always
congruent to the target is highly unlikely, as the each address
have multiple cache lines to map depending on the random-
ness. Therefore, attackers target partial congruence–addresses
that are congruent with the target only with a certain probabil-
ity. Algorithms like Prime, Prune and Test [34] (or Prime,
Prune and Probe [25]) add a pruning step to remove addresses
from the candidate set which are self-evicting, i.e., addresses
which can evict each other with certain probability. The goal
is to form a candidate set that remains in the cache, so access-
ing the target address and then re-accessing the candidate set
reveals exactly those elements congruent to the target address.
In terms of complexity, these algorithms are similar to con-
flict testing. Another optimization, Prune+Plumtree [21], sal-
vages the pruned addresses to generate other eviction sets, ulti-
mately reaching a complexity of O(S ·W 2 · log(S)) for caches
with random replacement and O(S ·W · log(S)) with LRU re-
placement. However, the authors mention that “it does not
apply to more advanced cache architectures such as skewed
randomized caches”.

2.5 Randomized LLC Designs

In a traditional set-associative cache, the address-to-set map-
ping is computed (deterministically) by a subset of the line ad-
dress bits. Conflict-based attacks exploit this easy-to-discover
determinism in address mapping to create efficient eviction
sets. To counter this, randomized cache designs introduce un-
predictability in the mapping, which makes the mapping hard
to discover in the first place. However, this is not the only
security-enhancing modification. In this section, we survey
different generations of randomized caches.

The first generation of secure randomized caches aimed
to randomize cache interference between an attacker and a
victim process to prevent useful information leakage. One ap-
proach was RPCache [42], which used a permutation table to
randomize the address-to-set mapping. This was followed by
CEASER [28], which employed a block cipher to randomize

the address-to-set-mapping. However, since set conflicts could
still occur with block-cipher-based set indexing, CEASER in-
troduced dynamic remapping to update the address-to-set
mapping (by re-keying the block cipher) before an attacker
could create an eviction set, making the mapping updatable.
PhantomCache [38] uses localized randomization within
a limited number of cache sets, effectively increasing cache
associativity to make the discovery of eviction sets harder. An-
other secure randomized cache, H2Cache [48], used a table-
based randomization for the L1 cache and block-cipher-based
randomization for the LLC.

The first generation of secure randomized caches was com-
promised by newer and faster eviction set discovery algo-
rithms [29, 41]. In response, CEASER-S [29] and Scatter-
Cache [43] introduced a skewed associative design on top of
randomized address-to-set mapping, providing a probabilis-
tic defense. In this design, the cache ways are partitioned
into multiple skews, each with a unique set mapping, and
the incoming addresses are randomly assigned to one of the
skews. This obfuscates cache accesses and makes eviction
set construction more difficult. These caches represent the
second generation of secure randomized caches. A recent de-
sign, called ClepsydraCache [39], uses a similar randomized
design to ScatterCache but uses time-based evictions instead
of remapping of the set mapping used in ScatterCache.

In the third generation, Mirage [30] builds on the V-Way
cache design [27], incorporating load-aware insertion and
global random eviction. This approach significantly reduces
the probability of set-associative evictions (SAEs), making
it highly unlikely for attackers to construct eviction sets.
Maya [6] is a variant of Mirage that optimizes space effi-
ciency with a reuse-based insertion policy. Interestingly, a
relatively older design, called NewCache [22], uses a register-
based dynamic mapping along with randomization to eventu-
ally achieve a fully associative mapping. The abstraction of a
fully associative cache was also achieved by the Chameleon
Cache [40], a modification of CEASER-S featuring a fully
associative victim cache with a random replacement policy
to decouple set conflicts from evictions. RECAST [47] is a
set-associative cache that uses core-private caches to protect
against cross-core attackers. Each cache line is tagged with a
secret bit, which determines the line-to-set mapping, thereby
creating the abstraction of a fully associative cache. Song et
al. [36] modified CEASER by introducing a mechanism that
detects ongoing attacks and triggers re-keying.

The fourth generation of secure randomized caches was
designed to defend against both occupancy-based and conflict-
based attacks. Cache partitioning is the most straightfor-
ward approach as it provides LLC space isolation. INTER-
FACE [20] is a cache design which combines indirect parti-
tioning and a randomized fully associative cache (like Mirage)
to address both attack classes. A more interesting recent de-
sign is SassCache [18], which only relies on randomization
of the address-to-set mapping to achieve security against occu-

4

Table 1: A comparison of secure randomized cache designs. A register stores the set permutation per word line in table-based
indexing, unlike block cipher-based indexing, where the same hardware derives the set for all addresses. Reported performance
and storage overheads are based on claims from the respective papers.

Design Indexing Policy Remapping? Skews? Other Security Knobs Mitigates Conflict
based Attacks?

Mitigates Occupancy
based Attacks?

Mitigates Flush
based Attacks?

Performance
Overhead

Storage
Overhead

RPCache [42] Table-based ✘ ✘ N/A ✘ ✘ ✘ 0.15% 1%

NewCache [22] Table-based ✔ ✘ N/A ✔ ✘ ✔ < 1% 10%

CEASER [28] Block Cipher-based ✔ ✘ N/A ✘ ✘ ✘ 1.1% 0%

CEASER-S [29] Block Cipher-based ✔ ✔ N/A ✘ ✘ ✔ 0.7% 0%

ScatterCache [43] Block Cipher-based ✔ ✔ N/A ✘ ✘ ✔ 2% 5%

PhantomCache [38] Block Cipher-based ✘ ✘
Localized

Randomization
✘ ✘ ✘ 1.2% 0.5%

Mirage [30] Block Cipher-based ✘ ✔
Decoupling, Load

Aware, Global Eviction
✔ ✘ ✔ 1.7% 20%

H2Cache [48] Block Cipher-based ✘ ✔ N/A ✘ ✘ ✘ 10.7% 0%

Chameleon [40] Block Cipher-based ✔ ✔
Fully Associative

Victim Cache
✔ ✘ ✘ < 1% < 0.1%

SassCache [18] Block Cipher-based ✘ ✔ Soft Partitioning ✔ ✔ ✔ N/A1 N/A2

ClepsydraCache [39] Block Cipher-based ✘ ✘ Time-based Evictions ✔ ✘ ✔ 1.38% < 8%

Song et al. [36] Block Cipher-based ✔ ✘
Attack Detection, Multi-

step Reallocation
✘ ✘ ✘ 0.89% 1.9%

RECAST [47] Block Cipher-based ✘ ✘
Address-Sensitive
Secret Generation

✔ ✘ ✘ 2.29% 1.1%

Maya [6] Block Cipher-based ✘ ✔
Decoupling, Load

Aware, Global Eviction
✔ ✘ ✔ -0.2% -2%

INTERFACE [20] Block Cipher-based ✘ ✔
Decoupling, Load

Aware, Global Eviction,
Partitioning

✔ ✔ ✔ 3.4% 14%

pancy attacks. In particular, SassCache enhances the address-
to-set mapping of a skewed associative randomized cache like
ScatterCache and enables LLC space isolation. As evident
from the above survey, each generation of randomized caches
introduces new modifications to address existing and potential
future attacks. However, a notable gap in the current literature
is the lack of an ablation study on the individual capabilities
of these security modifications. Such a study would not only
enhance our understanding of existing designs but could also
inspire new, optimized designs that are better suited to varying
resource constraints.

3 Systematization of Randomized Caches

What are security knobs? We define microarchitectural de-
sign modifications that are specifically implemented to en-
hance security in secure randomized cache designs as security
knobs. Ideally, the block cipher would be the first security
knob to study, as it is a critical component in nearly every
randomized cache design, providing the unpredictability es-
sential for security. It is advisable to use a block cipher that is
robust to shortcut cryptanalytic attacks [7,25], and provides a
uniform distribution of the encrypted set indices. Latency of

1The authors have used cache hit rate to quantify the performance of their
design instead of misses per kilo instructions. Thus, the impact of this design
on performance remains unknown.

2No storage overhead analysis has been performed by the authors

the state-of-the-art ciphers [8, 9] can be an issue here. Addi-
tionally, the correct implementation of the block cipher is also
crucial to the security properties of a secure randomized cache,
as highlighted in [31]. However, since the block cipher cannot
be considered optional, we exclude it from further analysis.
Instead, we focus on other microarchitectural modifications
that serve as security knobs. Identifying security knobs is
not always straightforward, as there are often dependencies
between different knobs. Some of these dependencies are ex-
plicit, while others only become apparent through empirical
analysis. Additionally, some knobs are merely attributes or
components of another knob and are referred to as sub-knobs.
A taxonomy of the knobs and sub-knobs employed in the
randomized cache designs is presented in Figure 2.

3.1 Evaluation Strategy and Simulation Setup
3.1.1 Metrics

Evaluating the full taxonomy of security knobs is challenging,
starting with the selection of appropriate evaluation metrics.
Prior work, notably [17], advocates using multiple metrics, in-
cluding: (i) Relative Eviction Entropy (REE), which quantifies
information leakage from attacker-victim conflicts; (ii) the dif-
ficulty of constructing eviction sets using state-of-the-art algo-
rithms; and (iii) the effectiveness of attacks on cryptographic
targets. Our work also adopts a multi-metric approach. We
first use a well-established metric—eviction rate—to identify

5

Knobs

Skewing
(Section 3.3)

High
Associativity

(Ass)
(Section 3.5)

Extra
Invalid Tags

(Inv)
(Section 3.4)

Remapping
(Section 3.7)

Replacement
Policy

(Section 3.6)

Random skew
selection

(RS)

Load-aware
skew selection

(LA) Eviction
strategy

Decoupling

Local eviction
(LE)

Global eviction
(GE)

Re-Reference
Interval

Prediction
(RRIP)

Random
(Ran)

Least Recently
Used
(LRU)

Randomized
Pseudo Least
Recently Used

(RPLRU)

Figure 2: An overview of the knobs and sub-knobs identified in modern secure randomized cache designs, along with their
abbreviations used throughout the paper.

cache designs that are promising from a security standpoint,
then apply additional metrics for deeper analysis.
Metric-I: Eviction rate. The eviction rate is defined as the
fraction of times a target address is evicted by an eviction set
of a given size, measured over n iterations. In each iteration:
(i) a target address x is randomly selected; (ii) its correspond-
ing eviction set is identified; (iii) the target is accessed; (iv)
the eviction set is accessed; and (v) it is checked whether the
target has been evicted. Prior works [34, 39, 43] also refer to
this metric as eviction probability in the context of random-
ized caches. For strong security, a design should exhibit a low
eviction rate even with large eviction sets. This eviction rate
experiment follows the methodology described in [34]. The
rationale behind choosing the eviction rate is as follows:
• The experiment for measuring this metric closely resembles

what happens in a real conflict-based attack. For example, in
the Prime+Probe attack [23], the eviction rate represents the
probability of detecting a secret-dependent victim access.

• Eviction rate is measured for a given eviction set size. If
generating an eviction set of that size is already difficult
using existing algorithms, it provides a clear, intuitive ex-
planation for a design’s security. Notably, the difficulty of
eviction set generation is a recognized metric in several
works [17], including ours.
Generating an eviction set for the eviction rate experiment

is a challenging task due to the existence of various eviction
set search algorithms. To avoid algorithmic bias, we assume
an oracle provides the eviction set, independent of any specific
search algorithm. These sets are identified by sampling a
large collection of random addresses, determining their set
indices using full knowledge of the block cipher key, and
selecting addresses partially congruent to the target address.
Note that selecting perfect eviction sets doesn’t make our
evaluation unrealistic; we later assess how real-world eviction
set generation algorithms [34] [25] can replicate such sets.
Metric-II: Number of evictions to generate an eviction set.

After filtering secure and promising designs based on eviction
rate, we evaluate them using state-of-the-art eviction set find-
ing algorithms [26, 34]. The goal is to assess the “difficulty”
of constructing an eviction set of a given size, measured by
the number of LLC evictions required. This forms the second
key metric in our evaluation and directly impacts the critical
design knob—the remapping period.

We do not explicitly evaluate specific cryptographic targets
for conflict-based attacks. While such targets could serve as
an additional metric, we argue that the difficulty of evicting
a single victim address—as measured by our eviction rate
experiments—naturally generalizes to evicting multiple ad-
dresses. Prior work [26] demonstrated this by combining evic-
tion sets for multiple distinct addresses to attack AES. Thus,
our single-address eviction rate and eviction set construction
results reflect the broader difficulty of targeting cryptographic
implementations. In contrast, for occupancy-based attacks, we
rely primarily on cryptographic benchmarks, as no alternative
metrics are yet established in the literature.
Simulation setup: To analyze the impact of various design
knobs on security against conflict-based attacks, we extend
the open-source behavioral cache simulation model from [35]
to incorporate all knobs outlined in Figure 2. Unless other-
wise specified, all experiments use a 2MB LLC with 16-way
associativity. For eviction set experiment, we set the number
of iterations n= 1000, based on empirical observations, as
most experiments converge reliably with this value.

3.2 Knob 1: Skewing
Traditional cache designs have one set that a particular ad-
dress can map to; however, under a Skew-k cache, an address
could go to one of the k possible sets, each belonging to one
skew. Skew is one of the most important security knobs used
in various secure randomized cache designs starting from
CEASER-S [29]. We note two possible sub-knobs based on
the skew selection (choosing one of k possible sets) strategy

6

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

CEASER
Skew-2
Skew-4
Skew-8
Skew-16

Figure 3: Eviction rate for a varying number of skews (Skew-k
has k skews) with random skew selection and LRU eviction.
CEASER does not use any skews and Skew-2 is a representa-
tive for skewed designs such as CEASER-S.

for an incoming cache line – i) Random skew selection (RS);
ii) Load-aware skew selection (LA).

3.2.1 Random Skew Selection (RS)

In random skew selection [29, 43, 48], a new cache line is
inserted into a randomly chosen skew. As shown in Figure
3, the eviction rate decreases with the number of skews for a
given eviction set size. However, for a fixed number of skews,
the eviction rate increases with the eviction set size. The key
observation is that there is a non-zero eviction rate even for a
small eviction set size, suggesting that even a small eviction
set can lead to information leakage.
Explanation. To explain the trend in Figure 3, we refer to [25],
which provides the expression for the eviction probability (pe)
of an eviction set E of size |E|. For a random replacement

policy, pe = 1− (1− 1
nw
)
|E|
k , where nw is the total number of

ways across skews and k is the number of skews. For LRU,
pe = 1−binom(|E|k , nw

k −1, 1
k), where binom is the cumula-

tive binomial distribution function. In both cases, pe decreases
as k increases, assuming a fixed |E|. The eviction rate in our
plots reflects this probability, excluding cache warm-up ef-
fects. Notably, even low eviction rates can lead to successful
attacks, as shown in prior work [25, 34].

3.2.2 Load-aware Skew Selection (LA)

The load-aware skew selection policy compares the remaining
capacity of the k-sets that an address can map into, and inserts
the address into the set having the largest remaining capacity.
In case the remaining capacity is the same for all the skews,
the tie is broken with a random skew selection. As shown in
Figure 4, load-aware provides slightly better security than ran-
dom skew selection. However, the gain gradually diminishes
with an increase in the skew count.
Explanation. The key difference between random and load-
aware skew selection is that the latter depends on the

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2
Skew-2-LA
Skew-4
Skew-4-LA
Skew-8
Skew-8-LA
Skew-16
Skew-16-LA

Figure 4: Eviction rate for varying number of skews (Skew-k
has k skews) with random vs load-aware skew selection (LA)
with LRU eviction.

cache state. Let us consider an address e mapping to sets
{s1,s2, · · ·sk} in skews {1,2, · · ·k}. Without loss of general-
ity, we consider the probability that e gets mapped to s1, which
depends on the occupancy of the other skews, which in turn
reflects the overall cache state. As a result, e can only evict
a target address x when the cache is nearly full—eviction
occurs only if all skews are close to capacity. Since eviction
set creation algorithms ignore cache state and select e based
solely on observed evictions during construction, these sets
tend to be ineffective unless the cache is at least ≈90% full.
However, the eviction rate experiments shown in Figure 4
indicate a slight improvement with load-aware skew selection
compared to random skew selection. This counter-intuitive
trend, given that higher eviction rates are generally expected
as caches fill quickly, was investigated and found to be an
artifact of the cache’s warm-up state and the method used
to compute the eviction rate. A detailed explanation of this
behavior is provided in Appendix B. In summary, a minor
variation in the eviction rate calculation, which accounts for
the size of the warm-up state, reconciles this observation with
our overall understanding. We recommend using this alter-
native calculation, even though it requires significantly more
simulation effort, only for a subset of designs with promising
security characteristics. Overall, we conclude that load-aware
skew selection, even when combined with multiple skews,
offers no clear security benefit over random skew selection.

Takeaway

Skewing is useful as it reduces the eviction rate of an
eviction set of a particular size. The skew selection policy
only has a limited impact on security–load-aware provides
a security benefit only when the cache is not full.

3.3 Knob 2: Extra Invalid Tags (Inv)

Mirage [30] uses extra invalid tags to ensure that an incoming
cache line can find space in its mapped set and not cause an

7

0 20 40 60 80 100
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

CEASER
Skew-1-Inv1-GLRU
Skew-1-Inv2-GLRU
Skew-1-Inv4-GLRU
Skew-2
Skew-2-Inv1-GLRU
Skew-2-Inv2-GLRU

Figure 5: Eviction rate for CEASER and two skews (Skew-2)
with random skew selection, extra invalid tags (Inv), and
global LRU eviction (GLRU).

SAE. To maintain such invalid tags in the cache, we keep
a threshold on the total number of valid entries that can be
kept in the cache and trigger the eviction mechanism once
this threshold is exceeded. Seeing invalid tags as a knob is
motivated by the fact that it involves multiple choices (as
sub knobs) to be made regarding cache structure and cache
management. The first possible sub-knob is whether to de-
couple the tag and data store. Another important sub-knob
is the eviction policy. Eviction policy is tightly coupled with
invalid tags, as the sole reason behind declaring a tag invalid
is to control when the evictions are supposed to be made.
Therefore, we consider it as a sub-knob for invalid tags.

3.3.1 Decoupled tag store has no security impact

There are two ways in which extra invalid tags can be provi-
sioned in the cache. The first is to use a decoupled tag and
data store with extra invalid tag entries in the tag store, which
has been used in Mirage. The data store size remains the
same as a traditional non-secure cache and the tag store is
expanded to store the extra invalid tag ways. An alternate
approach to remove the decoupling and instead operate the
cache at a lower capacity. In other words, whenever the total
valid entries inside the cache exceed a threshold number, we
trigger the eviction mechanism so that the cache never fills
up. This implies having less number of valid entries in the
cache compared to a non-secure cache of the same size.

While these choices indeed qualify as sub-knobs, one ob-
servation is that functionality-wise both are the same. We
observe this throughout our experiments as the results with
and without decoupling are the same. Without loss of gener-
ality, we go with no decoupling. Also, we would like to point
out that decoupling the tag and data store and adding extra
invalid tags leads to a hefty overhead regarding storage, area,
and power requirements that Maya [6] takes care of.

3.3.2 Extra invalid tags is not a standalone knob

One crucial observation regarding invalid tags is that they are
not useful without skews. A non-skewed cache with invalid
tags is nothing but CEASER operating with a lower capacity.
This is depicted in Figure 5, where we depict the combination
of invalid tags both with and without skews. As expected,
skewing has a positive impact on security. Therefore, the rest
of our analyses in this subsection will assume a minimum
of two skews. However, deciding the proper skew selection
policy is complex, as we discuss in the following paragraphs.

3.3.3 Local Eviction (LE) vs. Global Eviction (GE)

Interplay between skew selection and eviction policy:
Given that skews are essential, the next question is which
skew-selection policy fits well with extra invalid tags. Our
prior observation is that both policies perform almost equally
with skews. However, in the context of extra invalid tags, we
observe a complex interplay between the eviction policies
and the skew-selection policies. We explain this by consid-
ering the eviction and skew-selection policies in pairs. The
eviction policy in the presence of extra invalid tags can be
local (LE), that is, from the same set as the one in which an
insertion occurred; or global (GE), that is, a valid entry chosen
randomly from the entire cache is evicted upon each insertion.
Therefore, there are four combinations to evaluate: i) GE + RS;
ii) GE + LA; iii) LE + RS; iv) LE + LA.

Without loss of generality, we begin with the global LRU
eviction and random skew selection (GE+RS), which is also
illustrated in Figure 5. The observation here is that the com-
bination of skews, invalid tags, global eviction, and random
skew selection does not have any advantage over standalone
skewing with random skew selection. Next, we modify the
skew selection policy to load-aware skew selection (GE+LA).
As depicted in Figure 6, invalid tags now become effective,
and the eviction rate steadily decreases with an increase in in-
valid tags. This establishes invalid tags with global LRU evic-
tion and load-aware skew selection as a useful knob-subknob
combination. The same combination used by Mirage.

Next, we consider local eviction policies. The results with
load-aware skew selection (LE+LA) are depicted in Figure 7.
As observed, there is no impact of extra invalid tags, and the
results are the same as skewing with load-aware. We note
that the results do not change even when local eviction is
combined with random skew selection (LE+RS). Therefore,
we have omitted the plot for this combination.

So far in this evaluation, we have only evaluated the locality
of the eviction policies. However, the replacement policy, e.g.,
LRU or Random, should also be evaluated. We note that one
of the most successful design with extra invalid tags, namely
Mirage, uses global random replacement. We defer this dis-
cussion till Section 3.5. We conclude the current subsection
explaining why load-aware skew selection becomes effective
in the presence of invalid tags and global eviction.

8

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-LA
Skew-2-LA-Inv1-GLRU
Skew-2-LA-Inv2-GLRU
Skew-2-LA-Inv4-GLRU

Figure 6: Eviction rate for two skews (Skew-2) with load-
aware skew selection (LA), extra invalid tags (Inv), and global
LRU eviction (GLRU).

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-LA
Skew-2-LA-Inv1
Skew-2-LA-Inv2
Skew-2-LA-Inv4

Figure 7: Eviction rate for two skews (Skew-2) with load-
aware skew selection (LA), extra invalid tags (Inv), and local
LRU eviction.

Why is LA important? The positive impact of load-aware
skew selection warrants further clarification, as it initially ap-
peared ineffective as a sub-knob of skews (see Section 3.2.2).
However, this new observation does not contradict the ear-
lier finding. Load-aware skew selection is effective when the
cache is not full, and keeping the cache from becoming full
improves both the eviction rate and overall security. This is
achieved through the combination of extra invalid tags and
global eviction: the cache (including invalid tags) never be-
comes full, since consuming an invalid tag creates another.
However, this mechanism alone is insufficient. An eviction
set can still contain enough addresses mapping to a single
set in a skew, depleting all its invalid tags and triggering set-
associative evictions, compromising security. In such cases,
random skew selection becomes ineffective. Load-aware skew
selection mitigates this by lowering the likelihood of deplet-
ing all invalid tags in a skew, as it tends to distribute insertions
across skews more evenly. It effectively requires most sets in
other skews to be nearly full, which is unlikely under global
eviction. Thus, load-aware skew selection and global eviction
work in tandem to keep the probability of any skew becoming
full very low, preserving low eviction rates. However, this
dynamic is sensitive to the number of extra invalid tags per

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-Ass16
Skew-2-Ass32
Skew-2-Ass64
Skew-2-Ass128
Skew-16-Ass16

Figure 8: Eviction rate for two skews (Skew-2) with random
skew selection, local LRU eviction, and associativity (Ass).

skew, which influences the global eviction threshold.

Takeaway

Extra invalid tags can enhance resilience against conflict-
based attacks. But it has to be paired with skews, global
eviction, and load-aware skew selection. No other knob-
subknob combinations work. Decoupling the tag and data
store has no measurable impact on security.

3.4 Knob 3: High Associativity (Ass)
Prior work [17] explored the effect of cache associativity as a
security knob. We have also observed this effect in Section
3.2.1, where the eviction probability (pe) is inversely propor-
tional to the cache associativity. However, [17] limited their
evaluation to up to 16 ways. In this section, we extend this
analysis to high-associativity designs and demonstrate that
they offer significantly stronger security guarantees, making
high associativity a powerful design knob against conflict-
based attacks attacks.

We begin with the simplest possible configuration of knobs.
Once again we note that associativity without skews is noth-
ing but a traditional set-associative cache. As the set of knobs
related to extra invalid tags also does not make much sense
without skews, starting with skews and associativity seems
to be the most obvious choice. Figure 8 shows the trend of
eviction rate as we vary the cache associativity. Here we only
consider two skews and increasing associativity with random
skew selection. We observe that as we increase the cache
associativity, the eviction rate decreases for a given eviction
set size. Most interestingly, the eviction rate is almost zero up
to a certain eviction set size, and this size increases with asso-
ciativity. As we can observe from Figure 8, Skew-2-Ass128
performs really well till an eviction set size of ≈ 270.
Explanation. Intuitively, high associativity requires a very
large eviction set to evict the target address. This is true even
without any skews. Skews, on the other hand, make such evic-
tion sets probabilistic, thereby decreasing the eviction rate.

9

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-Ass16-LA-Inv2-GLRU
Skew-2-Ass32-LA-Inv2-GLRU
Skew-2-Ass64-LA-Inv2-GLRU
Skew-2-Ass128-LA-Inv2-GLRU
Skew-16-Ass16-LA

Figure 9: Eviction rate for two skews (Skew-2) with load-
aware skew selection (LA), extra invalid tags (Inv), global
LRU eviction (GLRU), and varying associativity (Ass).

However, as we can observe from Figure 8, the higher asso-
ciativity works as a dominating factor, keeping the eviction
rate close to zero up to a certain size of the eviction set. The
eviction rate increases rapidly after this threshold, but due to
skews, the increase in eviction rate is tapered. We have also
tested the effect of using load-aware skew selection rather
than random skew selection. However, since our setup has
neither extra invalid tags nor global eviction, when we con-
sider the cache state to be full, there is no difference in the
security provided by the two skew-selection methods.

We also show that skews and high associativity become
more effective with load-aware, extra invalid tags, and global
eviction (refer Figure 9). The combination of all these knobs
can provide a zero eviction probability, even for large eviction
sets. However, such a combination of knobs requires various
modifications to conventional set-associative caches.

Takeaway

High associativity even with two skews rapidly reduces
eviction rate, without requiring any other knobs. More-
over, the eviction rate remains close to zero up to a certain
eviction set size.

3.5 Knob 4: Replacement Policy
The replacement policy consists of the cache line insertion
policy, state update policy, and cache line eviction policy.
So far in this paper (Section 3.3.3), we have considered
the LRU replacement policy (both global and local). Prior
works [24, 37] have shown the effect of replacement policy
on security. In this subsection, we explore five popular poli-
cies: Random replacement (Ran), least recently used (LRU),
pseudo-least recently used (PLRU), randomized pseudo-least
recently used (RPLRU) [37], and Re-Reference Interval Pre-
diction (RRIP) [15]. LRU is rarely used in practice due to
its implementation complexity; instead, approximations like
PLRU are commonly used. Prior work [37] adapted PLRU

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-Ass64-Ran
Skew-2-Ass64-LRU
Skew-2-Ass64-RRIP
Skew-2-Ass64-RPLRU
Skew-2-Ass128-Ran
Skew-2-Ass128-LRU
Skew-2-Ass128-RRIP
Skew-2-Ass128-RPLRU

Figure 10: Eviction rate for two skews (Skew-2) with random
skew selection, varying associativity (Ass), and different local
replacement policies (LRU, Ran, RRIP, and RPLRU).

to skewed randomized caches via RPLRU. Since we focus
exclusively on skewed randomized designs in this section, we
evaluate only RPLRU and omit PLRU.

We evaluate the high-associativity configurations as well
as the successful configurations we have found with invalid
tags. Figure 10 shows the effect of the replacement policy
on the eviction rate of highly associative skewed caches. An
interesting observation is that the random replacement policy
significantly reduces the gain obtained due to high associativ-
ity, and the trend is almost identical to having 16 skews each
with associativity 16. However, we can provide this security
with two skews only, making it more practical to implement.
Another important point here is that only local replacement
makes sense for such designs as these caches are skewed set-
associative caches. There is no mechanism (such as invalid
tags) to detect if a set is “almost full” and trigger a global
eviction. The only way an eviction can be triggered is by
detecting if a set is full, and this leaks the same information
about the sets as a local eviction. Therefore, we limit our
evaluation for this configuration with local eviction policies
only. We also observe that RPLRU has a similar behavior
to LRU, suggesting that LRU approximations can achieve
security comparable to true LRU.
Explanation. We explain why random eviction performs
worse than RRIP, LRU, and RPLRU, all of which use reuse
information to decide eviction candidates. Consider a set in
one of the skews where the target address x resides, containing
warm-up entries, the target address, and eviction set entries. To
evict the target address, we need nw eviction set entries. Once
these are present, the target can be evicted with certainty. With
random skew selection, the eviction rate gradually increases,
reaching one after a certain threshold set size. In random
eviction, we do not need to completely fill a set, as each entry
in the eviction set has a probability of 1/nw of evicting the
target. There is an equal probability of self-eviction among
eviction set entries, preventing the eviction rate from reaching
one. Since each address has a constant probability of evicting
the target, the exact number of eviction set entries becomes

10

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-LA-Inv1-GLRU
Skew-2-LA-Inv1-GRan
Skew-2-LA-Inv1-GRRIP
Skew-2-LA-Inv1-GRPLRU
Skew-2-LA-Inv2-GLRU
Skew-2-LA-Inv2-GRan
Skew-2-LA-Inv2-GRRIP
Skew-2-LA-Inv2-GRPLRU
Skew-2-LA-Inv4-GLRU
Skew-2-LA-Inv4-GRan
Skew-2-LA-Inv4-GRRIP
Skew-2-LA-Inv4-GRPLRU

Figure 11: Eviction rate for two skews (Skew-2) with load-
aware skew selection (LA), extra invalid tags (Inv), and global
replacement policies (GLRU, GRan, GRRIP, and GRPLRU).

less important. Even with fewer entries, eviction still occurs,
leading to a non-zero eviction probability. This makes random
eviction less efficient than LRU. Figure 11 shows the effect
of using extra invalid tags, load-aware skew selection with
global random, global LRU, global RRIP, and global RPLRU
eviction. We observe that the global LRU and global RRIP
eviction policies perform much better than the global random
eviction policy, and this gap widens with an increasing number
of extra invalid tags. We also observe that the global RPLRU
performs similarly to global LRU while being more practical
to implement.
Explanation. The improved security of global LRU over
global random eviction stems from a reasoning similar to why
local LRU outperforms local random eviction. With global
random eviction, every accessed address has a finite proba-
bility of evicting the target address. In contrast, under global
LRU, the eviction set is accessed immediately after the tar-
get, making the target the most recently used cache entry.
Therefore, the eviction set can only evict the target address
after filling the entire cache, making successful target eviction
significantly harder.

Takeaway

Random replacement policies perform worse than LRU
and RRIP for conflict-based attacks, as they result in
higher eviction rates.

3.6 Knob 5: Remapping
Remapping is a critical knob in many secure randomized
cache designs. It is necessary when eviction sets (with a rea-
sonable non-zero eviction rate) can be constructed within a
finite time. Remapping changes the address-to-set mapping by
updating the block cipher key and make any eviction set con-
structed for the existing mapping useless. Most of the designs
discussed so far do require remapping, except a few leveraging
several extra invalid tags (e.g., Mirage), and thereby making

eviction rate construction difficult. In this section, we only
evaluate configurations requiring remapping (Skew-2-Ass64
and Skew-2-Ass128, and designs with a few invalid tags.).

Using Metric II: The evaluation of remapping differs from
the other knobs discussed in Section 3. Instead of assessing
its usefulness (which is evident), we evaluate the remapping
period. A high remapping period (that is, remapping at a
slower rate) for a randomized cache improves performance,
but also provides an attacker a larger window to attack. Set-
ting the remapping period is, therefore, a performance security
tradeoff. The remapping period cannot be evaluated with the
eviction rate metric used so far. Therefore, we resort to our
second metric – the number of evictions to generate an evic-
tion set. Recall that so far, we have calculated the eviction rate
metric based on ideal eviction sets. For the remapping period,
however, we need to practically construct the eviction sets
using the state-of-the-art eviction set generation algorithms.
Given an eviction set size (|E|), and a remapping period (R),
the expected number of evictions (E) needed to formulate the
eviction set for a skewed set-associative cache with S sets, nw
ways, and k skews can be written as E = R·S·nw

P′ [34]. Here

P′ = 1−∑

|E|·nw
k −1

i=0

(R·S·nw
i

)
Pi(1−P)R·S·nw−i and P = 1

S·k . We
use this formula to estimate the remapping period R based on
our obtained values of |E| and E from Metric-II.

Figure 12 shows the number of LLC evictions required to
construct eviction sets that achieve a 30% eviction rate for
various cache configurations. The 30% threshold is chosen
following [34] to enable fair comparison. For Skew-2-Ass64,
achieving this rate requires an eviction set of 116 entries,
which takes an average of 3.7 million LLC evictions using
the conflict testing algorithm. Skew-2-Ass128 requires 241
entries, needing approximately 7.8 million LLC evictions.
In contrast, Skew-16 achieves the same eviction rate with
87 entries and 2.6 million LLC evictions. More precisely,
for Skew-2-Ass128, |E| = 241, and E = 7.8× 106, which
requires a remapping period R≈ 228. For Skew-2-Ass64, we
obtain R ≈ 103. Notably, for Skew-16 (with associativity 16)
R ≈ 39, which establishes the efficacy of high-associativity.

Comparing eviction set finding algorithms: In Figure 12,
the results presented are with respect to the Conflict Test-
ing [34] eviction set generation algorithm. However, choosing
Conflict Testing was not ad-hoc, but based on a compari-
son between the state-of-the-art eviction set generation algo-
rithms, among which Conflict Testing is found to perform
the best. More precisely, we compare Conflict Testing [34]
and Prime, Prune and Probe [25] algorithms for eviction set
generation, which are widely used for attacking randomized
caches. Table 2 shows a comparison of the number of LLC
evictions required to generate eviction sets of various sizes
for Skew-2-Ass64 and Skew-16 using the two algorithms.
We can clearly observe that Conflict Testing requires lesser
number of LLC evictions. Additionally, Prime, Prune and
Probe requires ≈10× the number of LLC accesses as Conflict

11

Skew-16
Skew-2

Skew-2-LA-Inv2-GLRU

Skew-2-Ass64

Skew-2-Ass64-LA-Inv2-GLRU

Skew-2-Ass128

Skew-2-Ass128-LA-Inv2-GLRU
0

2

4

6

8

10

Nu
m

be
r o

f L
LC

 E
vi

ct
io

ns
(in

 m
illi

on
s)

Figure 12: The number of LLC evictions required to create
eviction sets that achieve a 30% eviction rate.

Table 2: A comparison of the number of LLC evictions needed
to create eviction sets of different sizes using Conflict Testing
and Prime, Prune and Probe.

Eviction
Set Size

Conflict Testing Prime, Prune and Probe
Skew-2-Ass64 Skew-16 Skew-2-Ass64 Skew-16

10 0.3 million 0.3 million 0.8 million 0.8 million

20 0.7 million 0.6 million 1.6 million 1.5 million

30 1.0 million 1.0 million 2.0 million 2.1 million

40 1.3 million 1.3 million 2.6 million 2.7 million

Testing for the same eviction set size [34]. This makes it infea-
sible to simulate for large eviction set sizes and therefore we
only show results for smaller eviction set sizes. Such results
justify our choice of eviction set finding algorithm.

Takeaway

Randomized cache designs with high associativity can
have higher remapping periods compared to designs such
as CEASER-S and Skew-16.

3.7 Sensitivity to Cache Size
We further explore highly associative configurations by vary-
ing the cache size from 1MB to 4MB, and also considering a
96MB cache, while observing the eviction set sizes required
to reach a 30% eviction rate. Once again we use Metric-II.
Figure 13 shows that the eviction rate for Skew-2-Ass64 and
Skew-2-Ass128 remains unaffected by cache size. This is
expected, as the likelihood of evicting a target address de-
pends only on the cache associativity, not on the number of
sets. However, as shown in Figure 14, the number of evic-
tions required to construct such eviction sets increases with
cache size. This is because current state-of-the-art eviction
set search algorithms scale linearly with cache size. Extrapo-
lating to typical LLC sizes, for a 96MB cache, approximately

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-Ass64-1MB
Skew-2-Ass64-2MB
Skew-2-Ass64-4MB
Skew-2-Ass64-96MB
Skew-2-Ass128-1MB
Skew-2-Ass128-2MB
Skew-2-Ass128-4MB
Skew-2-Ass128-96MB

Figure 13: Eviction rate for two skews (Skew-2) with random
skew selection, high associativity (Ass64 and Ass128), and
varying cache size (associativity remains the same).

187 million LLC evictions are required for Skew-2-Ass64,
and about 381 million for Skew-2-Ass128.

Skew-2-Ass64-1MB

Skew-2-Ass64-2MB

Skew-2-Ass64-4MB

Skew-2-Ass128-1MB

Skew-2-Ass128-2MB

Skew-2-Ass128-4MB
0

3

6

9

12

15

Nu
m

be
r o

f L
LC

 E
vi

ct
io

ns
(in

 m
illi

on
s)

Figure 14: The number of LLC evictions required to create
eviction sets achieving 30% eviction rate.

4 The Knobs and Occupancy-based Attacks

Occupancy-based attacks do not leak information at the set
level and do not rely on eviction sets. Randomized cache
knobs are primarily designed to prevent eviction set creation
and they provide no guarantee against occupancy-based at-
tacks. While it is essential for cache designs to defend against
conflict-based attacks, they must also avoid unintentionally
making occupancy-based attacks easier. This underscores
the importance of evaluating cache knobs in the context of
occupancy-based threats.

Most defenses against occupancy-based attacks focus on
hardware partitioning [4, 13, 19, 20], with SassCache [18] be-
ing a notable exception. SassCache employs soft partitioning
using block cipher-assisted domain isolation, reducing the
likelihood of cross-domain evictions by limiting the bit-width
of the cryptographic mapping. To date, there has been lim-
ited exploration of cache design knobs specifically targeting
occupancy-based attacks. SassCache’s soft partitioning re-

12

SetAssoc
CEASER-S

Skew-16
Mirage

Skew-2-Ass128
SassCache

Way-based Partitioning
0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
en

cr
yp

tio
ns

Keys not
Distinguished

16.49 35.77
AES
Mod. Exp.

Figure 15: Normalized number of encryptions to distinguish
the keys in AES and Modular Exponentiation for various
cache designs. Normalization is done with respect to FA-RR.

mains the only prominent strategy. We begin by analyzing the
effectiveness of knobs originally intended for conflict-based
attacks in mitigating occupancy-based threats. We then evalu-
ate soft-partitioned designs like SassCache. For comparison,
we also consider an ideal static partitioned design that ensures
complete domain isolation. We do not explore other parti-
tioning schemes, as our focus is on evaluating knobs within
randomized cache designs.
Evaluated designs. To streamline our analysis, we evaluate a
selected set of representative designs from Section 3: a skewed
design (CEASER-S), an extra invalid tags-based design (Mi-
rage), a highly skewed design (Skew-16), and a highly as-
sociative design (Skew-2-Ass128). For soft-partitioned ran-
domized designs, we evaluate SassCache with a coverage of
39% (t=−1). We also evaluate a static way-based partitioned
design as the ideal mitigation against occupancy-based at-
tacks. All designs are compared to a fully associative design
with random replacement (FA-RR).
Benchmarking strategy. For the occupancy-based attack
evaluation, we use AES (OpenSSL implementation with T-
tables) and modular exponentiation, measuring the number
of encryptions required to distinguish between two secret
keys. The attacker begins by filling the cache with a randomly
chosen occupancy set—a collection of addresses capable of
occupying the cache. The attack proceeds by priming the
cache with this set, allowing the victim to execute, and then
probing the same set to count the number of cache misses.
Based on these miss statistics, the attacker attempts to differ-
entiate between encryptions using different keys. This evalua-
tion follows the methodology of CacheFX [17], and we use
the same simulator. However, we explore additional design
variants, many introduced through our knob-based design ex-
ploration. We collect 100,000 encryption traces per key and
report the median number of encryptions required to distin-
guish between the keys.
Observations. Figure 15 shows the number of encryptions
required to distinguish keys in AES and Modular Exponen-

FA
SetAssoc

CEASER-S

Skew-2-Ass128
SassCache

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Nu
m

be
r o

f e
nc

ry
pt

io
ns

64739 68479
Ran
LRU

Figure 16: Number of encryptions to distinguish the keys in
AES for different replacement policies (Ran and LRU).

tiation, normalized to FA-RR. We observe that all the cache
designs that use knobs designed for mitigating conflict-based
attacks perform quite similarly to FA-RR, with the exception
of the set-associative design. However, SassCache (soft par-
titioning) provides a much better security compared to other
randomized cache designs that are secure to conflict-based
attacks. Moreover, a way-based static partitioned design pro-
vides complete protection.
Explanation. Let us first explain why the set-associative
cache performs relatively worse than other designs. This is be-
cause, in randomized cache designs, the randomness (due to
skew selection or eviction policy) enhances security. Specif-
ically, there are always addresses in the occupancy set that
map to the same cache set, and the same can happen for vic-
tim accesses. These colliding addresses create self-evictions.
For highly deterministic schemes, such as a set-associative
cache, the self-evictions for both the victim and attacker are
also deterministic, as each address can only map to one set
in the cache. In contrast, in designs with more randomness,
self-eviction noise is random. Since occupancy-based attacks
focus on the total number of misses, any deterministic self-
eviction for the victim will be an artifact of the victim’s access
pattern and, therefore, more of a signal than noise for the at-
tack. On the other hand, random self-evictions are imposed by
the cache design and do not (entirely) depend on the victim’s
access pattern. This randomness adds noise and significantly
increases the number of encryptions needed for an attack. To
better understand the impact of deterministic vs. randomized
eviction policies, we further examine the LRU replacement
policy (see Figure 16). As shown, the lack of randomness sig-
nificantly reduces the efficacy of schemes using deterministic
policies compared to those with random eviction. The trend
is similar for other deterministic replacement policies, such
as RRIP, and thus the results for RRIP were omitted.

Next, we explain why all the randomized designs perform
almost the same with respect to occupancy-based attacks in
Figure 15. We attribute this to the evaluation strategy where
the entire cache has been occupied. Due to full occupancy,
the adversary can observe all misses caused by the victim’s

13

access irrespective of whether the replacement policy is local
or global. This is the main reason behind all representative
designs having almost the same performance with respect to
the occupancy-based attacker.

Finally, we examine SassCache and static way-based par-
titioning. SassCache guarantees a certain degree of isolation
between the cache entries controlled by different security do-
mains, while static partitioning ensures that there is no leakage
between the security domains. While both designs provide
significantly better security against occupancy-based attacks
compared to other randomized cache designs, SassCache still
cannot fully block leakage of information between domains,
and thus is still vulnerable to occupancy-based attacks com-
pared to a static way-based partitioned design, which cannot
be broken by any conflict or occupancy-based attack.
Low-occupancy-based attacks. So far, we have focused on
attacks that fully occupy the cache to extract sensitive data
such as AES keys. Recent work [12] extends this threat model
to low-occupancy-based attacks, which can be used for covert
channels, process fingerprinting, and key recovery. [12] uses
guessing entropy, defined as the expected number of guesses
an attacker needs to make to correctly guess the secret key,
as their metric to measure the threat. The lower the guessing
entropy, the easier for the attacker to obtain the secret key.
Their findings show that such attacks are feasible on Mirage
even with only 10% cache occupancy. Moreover, at low oc-
cupancy levels, Mirage performs worse than ScatterCache
and CEASER-S for covert channel attacks, indicating that the
locality of replacement impacts security under low occupancy.
This trend is attributed to Mirage’s global random eviction
policy [12]. We extend their analysis to our high-associativity
designs (Skew-2-Ass64 and Skew-2-Ass128) as shown in
Figure 17, and find that these designs offer similar resilience
to SassCache and ScatterCache, and do not exhibit the same
vulnerability as Mirage.

Takeaway

Deterministic replacement policies offer worse security
than random ones against occupancy-based attacks. Lo-
cal eviction policies provide better security than global
ones for low-occupancy-based attacks, while performing
similarly for full-occupancy-based attacks.

5 Open Problems

Unified security metric for occupancy-based attacks. In
this work, we used eviction rate and the difficulty of eviction
set generation as metrics to evaluate cache resilience against
conflict-based attacks. For occupancy-based attacks, we relied
on cryptographic workloads such as AES and modular expo-
nentiation, due to the lack of established, targeted metrics in
the literature. With the growing threat of occupancy-based at-

0 500 1000 1500 2000 2500 3000
Number of Observations

40

60

80

100

120

Gu
es

sin
g

En
tro

py

CEASER-S
Mirage
SassCache
Skew-16
Skew-2-Ass64
Skew-2-Ass128

Figure 17: Guessing entropy for AES key recovery across a
50% occupancy rate for varying number of observations.

tacks, there is a pressing need for a unified metric to quantify
cache resilience in such scenarios.
SassCache security against multiple adversary processes.
SassCache provides a thorough security evaluation for sce-
narios with a single attacker domain. However, multi-domain
attacks are also realistic. In such cases, the authors suggest
that cloud vendors select the parameter t based on the expected
co-location probability, using the formula Ct =1−(1−C)nd .
However, accurately predicting the number of attacker do-
mains in advance is often impractical and may lead to security
vulnerabilities if the actual number exceeds the expectation.
Although t is reconfigurable in hardware, a comprehensive
analysis of the multi-domain attacker threat and the effective-
ness of the proposed mitigation remains essential. Finally,
more alternatives should be explored for occupancy-based at-
tack mitigation, which are agile and scalable, and yet provide
the same security as hard partitioning.

6 Conclusions

The key findings from our knob-based systematization can be
summarized as follows: (i) Skewing is the most versatile knob
and should be included in all randomized cache designs. (ii)
Extra invalid tags result in designs closest to fully associative
caches, offering strong security against conflict-based attacks,
but require complex knob combinations, increasing design
complexity. Moreover, even with this increased design com-
plexity, we do not get any advantage against occupancy-based
attacks. Additionally, designs with global eviction, such as
Mirage, have been shown to be vulnerable to low-occupancy-
based attacks. (iii) High associativity, even with just two
skews, provides strong security against conflict-based attacks.
However, they do not provide any benefit against occupancy-
based attacks. In general, they require relatively less number
of knobs to achieve good security. However, remapping is
required which invalid tag-based designs can avoid. Overall,
while there is no clear winner in this study, from a view-
point of design complexity versus security tradeoff, high-
associativity designs should be considered as viable options.

14

7 Acknowledgments

We thank the authors of [12,17,35] for generously supporting
us to use their code for our various experiments. We would
also like to thank the anonymous reviewers for their construc-
tive comments that helped in improving this work. This work
is supported by the Trust Lab Research Grant 2024.

8 Ethics Considerations

Disclosures. This paper does not introduce any novel or pre-
viously unknown attacks. Instead, it focuses exclusively on
attacks that have already been disclosed and documented in
prior work. All the attacks discussed in this paper are well-
established and widely recognized within the community.
Experiments using private systems. All research activities
undertaken for this paper were conducted exclusively on sys-
tems owned and managed by the authors and their affiliated
institution. The experiments were carried out using software-
based, open-source simulators to replicate the required con-
ditions and analyze system behaviors. Consequently, no real-
world systems were accessed, and no vulnerabilities were
discovered, exploited, or tested on live or operational systems.
Terms of service. All experiments used open-source sim-
ulators, specifically the simulation models from [35], [17],
and [12]. The tools have been cited appropriately to ensure
transparency and acknowledge their contribution.
Cache vulnerabilities. In this work, we provide robust met-
rics for evaluating both existing and novel secure randomized
cache designs. We offer fresh insights into previous analyses
and develop new experiments to better understand the inner
workings of secure randomized caches. Our primary focus is
on identifying security knobs that are effective and resilient
against adversaries, such as conflict-based and occupancy-
based attackers. We successfully identified a minimal cache
design that defends against conflict-based attacks. While the
risk of occupancy-based attacks is not new and has long been
recognized by the community, we emphasize that most exist-
ing secure cache designs acknowledge their vulnerability to
these attacks, with some proposing mitigations. Ultimately,
we stress the importance of developing new cache designs
that specifically account for occupancy-based attacks, which
represent a significant threat to modern systems.

9 Open Science

Our work offers new insights into the evaluation of existing
secure randomized cache designs through both established
and novel experiments, leveraging open-source simulators.
The eviction rate and eviction set search results were obtained
using the open-source behavioral cache simulation model in-
troduced by [35]. We have modified this model and intend to
release both the modifications and the accompanying scripts

to facilitate the replication of our findings during artifact eval-
uation. Simulations on occupancy-based attacks were con-
ducted by extending the open-source CacheFX simulator [17].
For the low-occupancy-based attack evaluation, we extend
the open-source setup provided [12].

We have publicly released all the tools and scripts used in
this work for the security analysis of cache designs, ensuring
full reproducibility of our security results. The permanent link
for our source code can be found at https://doi.org/10.
5281/zenodo.15529618. We now provide a brief overview
of the various tools and scripts used. A more detailed version
of the artifact will be made available later, as the “Artifact
Appendix”.
• cache-model: An extended version of the behavioral cache

simulation model by [35]. This model is used to generate
results for Figures 3–14, 18–19, and Table 2.

• cachefx: An extended version of the CacheFX simulator in-
troduced by [17]. This simulator is used to generate results
for Figures 15–16.

• low-occupancy: This contains the results for our low-
occupancy-based attack simulations, introduced by [12].
Note that this can only reproduce Figure 17 based on our
original results, and it does not have the source code to run
a new set of simulations.

• buildAll.sh: Script used to build all source files for
the cache model and CacheFX simulator.

• genAllFigs.sh: Script used to run all experiments and
generate PDF files for Figures 3–19.

• genTable.sh: Script used to run experiments and gen-
erate Table 2.

• requirements.txt: A list of the python libraries
needed for smooth functioning of all scripts. These can
be installed using:
pip3 install -r requirements.txt

• README.md: Provides a description of the directories and
detailed steps to build projects and run experiments to re-
produce results from this work.

A Appendix: Evaluating Design Trade-offs

Security. We evaluate the security of the shortlisted designs
based on the number of LLC evictions required to construct
an eviction set. A higher number of required evictions indi-
cates stronger resistance to conflict-based attacks. We use the
Conflict Testing algorithm for eviction set generation, as it out-
performs alternatives such as Prime, Prune and Probe. High-
associativity designs, such as Skew-2-Ass128, and invalid-
tag-based designs, like Skew-2-Ass128-LA-Inv2-GLRU, of-
fer strong protection by making eviction set construction sig-
nificantly more difficult and maintaining short remapping pe-
riods. Other designs, such as Mirage and SassCache, achieve
an extremely low probability of set-associative evictions, ren-
dering eviction set discovery nearly impossible.

15

https://doi.org/10.5281/zenodo.15529618
https://doi.org/10.5281/zenodo.15529618

Table 3: A comparison of secure randomized cache designs, the number of LLC evictions to create an eviction set with 30%
eviction rate, and their performance, storage, power overheads.

Design LLC Evictions Needed
to Create Eviction Set Knobs Used Performance

Overhead
Logic

Overhead
Dynamic Power

Overhead
Static Power

Overhead

Skew-2 (CEASER-S) 0.5 million Skews, Remapping -1.3% 1.9% 2.5% 2%

Skew-16 (ScatterCache) 2.8 million Large number of skews, Remapping 0.1% 1.7% 0.5% 1.4%

Skew-2-LA-Inv2-GLRU 2.3 million
Skews, Load-aware, Invalid

Tags, Global Eviction, Remapping
1.3% 1.9% 5.2% 2%

Mirage Not Possible
Skews, Load-aware,

Invalid Tags, Global Eviction
0.2% 18.6% -0.2% 19.6%

Skew-2-Ass64 3.8 million Skews, High Associativity, Remapping -2.1% 2.3% 1.8% 3.3%

Skew-2-Ass128 7.9 million Skews, High Associativity, Remapping -2.2% 2.4% 1.7% 6.4%

Skew-2-Ass64-LA-Inv2-GLRU 6.1 million
Skews, High Associativity, Load-aware,

Invalid Tags, Global Eviction, Remapping
-2.2% 2.3% 1.8% 3.3%

Skew-2-Ass128-LA-Inv2-GLRU 11.0 million
Skews, High Associativity, Load-aware,

Invalid Tags, Global Eviction, Remapping
-2.5% 2.5% 1.7% 6.4%

SassCache (coverage = 39%) Not Possible Skews, Soft Partitioning 2.3% 2.4% 7.4% 1.2%

Performance. We evaluate a range of secure randomized
cache designs using the ChampSim [3] microarchitecture
simulator. Our baseline is a non-secure 8-core system with a
16MB, 16-way set-associative LLC, employing the LRU re-
placement policy and 64-byte cache lines. We select 15 homo-
geneous workloads (42 sim-points) from SPEC CPU2017 [2],
focusing on benchmarks with more than one LLC miss per
kilo-instruction (MPKI) in a single-core 2MB cache config-
uration. Each simulation includes a 50-million-instruction
warm-up phase, followed by the execution of 1.6 billion in-
structions across eight cores (200 million per core) within the
region of interest. To compare performance across cache de-
signs, we use the weighted speedup [33] metric for 8-core sys-
tems, normalizing all results to the non-secure baseline. Most
designs incur only marginal performance overheads, with the
largest slowdowns observed for Skew-2-LA-Inv2-GLRU, due
to only 75% valid cache entries, and SassCache, due to soft
partitioning between cores.
Logic. We analyze the total storage requirements of each
design by calculating the number of bits per tag and data
entry. Most designs incur a modest 2–3% storage overhead,
primarily due to the addition of secure domain ID (SDID)
bits in each tag. A notable exception is Mirage, which has
significantly higher overhead due to a 75% larger tag store
and pointer-based indirection between tag and data entries.
Additionally, several designs require extra logic, such as cir-
cuitry for load-aware skew selection and block ciphers for
address randomization. We compare this logic overhead to
the 5.5 million gate equivalents (GEs) used in the 1MB L2
cache of the BROOM chip [11], scaled to a 2MB cache.
Power. We estimate dynamic and static power overheads
using P-CACTI [1], configured in sequential access mode
and modeled for 7nm FinFET technology. For LLC static
power, most designs exhibit minimal overheads, with high-
associativity designs incurring slightly higher overheads (up

to 6%) due to more complex lookup circuitry. Mirage incurs a
19.6% static power overhead, attributed to a 75% increase in
tag entries and the use of indirection pointers between tag and
data arrays. The baseline has a static LLC power of ≈520mW.

For dynamic power, we focus on the LLC hit and miss
power. Since each LLC miss goes directly to the DRAM, we
also need to account for the DRAM access power. We estimate
tag and data read/write energy using P-CACTI, and assume a
DRAM read/write energy of approximately 60nJ. As DRAM
access is much more expensive than LLC access in terms of
energy, designs with lower LLC miss rates achieve better over-
all dynamic power efficiency compared to standard 16-way
associative designs. For example, high-associativity caches,
despite their higher dynamic access energy, have smaller dy-
namic power overheads than their 16-way associative coun-
terparts. The baseline dynamic power (both LLC and DRAM
access) is around 1800mW.

B Appendix: Impact of Warm-up States

In Section 3.2.2, we observed some non-intuitive trends in
eviction rate results. We argue that these trends stem from the
specifics of the eviction rate experiment rather than limita-
tions of the metric itself. Following the method in [34], we
gradually increase the size of the warm-up set in iterations by
retaining cache entries from one iteration to the next, starting
from an empty cache. This approach averages over varying
cache states, smoothing out the influence of any particular
initial state. It also significantly reduces simulation time by
avoiding per-iteration warm-up. However, this averaging over
warm-up states is what leads to the confusing trends noted in
Section 3.2.2.
Warm-up state and load-aware skew selection. To elab-
orate, we refer to the eviction rate experiments in Figure 4,

16

0 20 40 60 80 100
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Warmup-0
Warmup-25
Warmup-50
Warmup-75
Warmup-95
Warmup-100
Warmup-Avg

Figure 18: Eviction rate for two skews with load-aware skew
selection, LRU eviction and different warm-up states. For
example, Warmup-75 refers to a Skew-2-LA cache with a
75%-filled warm-up state. Warmup-Avg refers to a Skew-2-LA
cache with an average warm-up state as per [34].

where we compare random and load-aware skew selection.
Surprisingly, load-aware skew selection appears to offer some
improvement over random selection, which seems counterin-
tuitive. As discussed in Section 3.2.2, any eviction set should
be ineffective in the presence of load-aware skew selection,
unless the cache is nearly full. However, since the cache being
full is a common case, the overall improvement for non-full
states should be negligible. However, the eviction rate experi-
ment averages results across all warm-up sizes, giving equal
weight to states with low cache occupancy. This skews results
and artificially lowers the eviction rate, creating a misleading
impression. While the trends in Figure 4 may seem promising
from a design perspective, they do not reflect the true secu-
rity behavior. To validate this, we modified the experiment
to compute eviction rate separately for each warm-up level.
As shown in Figure 18, eviction sets become effective only
at high warm-up percentages. At that point, the benefit of
load-aware skew selection vanishes, since with a full cache,
tie-breaking effectively makes it behave like random skew
selection. This supports our interpretation. While averaging
over cache states provides useful design-space insights and
faster simulation (as done in [34] and throughout this paper)
it does not always capture edge-case behaviors. Therefore,
we use the more detailed, per-state eviction rate analysis se-
lectively for promising designs.
Load-aware skew selection with invalid ways. Building on
the previous discussion, we performed the enhanced eviction
rate analysis for all promising designs but highlight only the
most notable findings here. One such case involves combin-
ing load-aware skew selection with invalid ways. Figure 6
in Section 3.3.3 shows the standard eviction rate results for
this combination. For comparison, Figure 19 in this section
presents the enhanced eviction rate, calculated per warm-up
state size. Specifically, Figure 19 captures the effect of starting
from a full cache (excluding extra invalid tags) on configura-
tions using load-aware skew selection, extra invalid tags, and

0 50 100 150 200 250 300
Size of Eviction Sets

0.0

0.2

0.4

0.6

0.8

1.0

Ev
ict

io
n

Ra
te

Skew-2-LA-Inv1-GLRU
Skew-2-LA-Inv1-GLRU-100
Skew-2-LA-Inv2-GLRU
Skew-2-LA-Inv2-GLRU-100
Skew-2-LA-Inv4-GLRU
Skew-2-LA-Inv4-GLRU-100

Figure 19: Eviction rate for two skews (Skew-2) with
load-aware skew selection (LA), extra invalid tags (Inv),
and global LRU eviction (GLRU) with different warm-up
states. For example, Skew-2-LA-Inv2-GLRU-100 refers to
a Skew-2-LA-Inv2-GLRU cache with a 100%-filled (exclud-
ing the invalid entries) warm-up state.

global eviction. We observe a significant discrepancy between
the standard and enhanced eviction rates when the number
of invalid tags is small. This gap arises because the original
experiment does not emphasize the more probable full-cache
scenarios. In a fully occupied cache, eviction set addresses
need only displace invalid tags in the target set, which is eas-
ier when there are fewer such tags. As the number of extra
invalid tags increases, this warm-up state effect diminishes.
Notably, Mirage—the most effective design leveraging invalid
tags—employs a sufficiently large number of them. However,
while Mirage focuses on blocking set-associative evictions,
our analysis uses a unified eviction rate-based metric, provid-
ing a broader perspective.

As a final takeaway, we argue that the issue arises not from
the eviction rate metric itself, but from how it is computed
to speed up evaluations. Both evaluation speed and accuracy
are important. While a nearly full cache is generally com-
mon, it is not guaranteed. For example, if a target system
is underutilized for a while, the attacker can choose this as
an attack window. It can then craft a warm-up scenario to
their advantage by exploiting such an underutilized system.
Therefore, we recommend not overlooking warm-up effects,
but performing enhanced eviction rate evaluation only for a
selected subset of designs.

References

[1] Pcacti tool, Online. Available: https://sportlab.
usc.edu/downloads/.

[2] SPEC CPU 2017 traces for champsim. https:
//hpca23.cse.tamu.edu/champsim-traces/
speccpu/index.html, February 2019.

17

https://sportlab.usc.edu/downloads/
https://sportlab.usc.edu/downloads/
https://hpca23.cse.tamu.edu/champsim-traces/speccpu/index.html
https://hpca23.cse.tamu.edu/champsim-traces/speccpu/index.html
https://hpca23.cse.tamu.edu/champsim-traces/speccpu/index.html

[3] ChampSim simulator.
http://github.com/ChampSim/ChampSim, May
2020.

[4] Kerem Arikan, Abraham Farrell, Williams Zhang Cen,
Jack McMahon, Barry Williams, Yu David Liu, Nael B.
Abu-Ghazaleh, and Dmitry Ponomarev. Tee-shirt: Scal-
able leakage-free cache hierarchies for tees. In 31st
Annual Network and Distributed System Security Sym-
posium, NDSS 2024, San Diego, California, USA, Febru-
ary 26 - March 1, 2024, pages 1–18, 2024.

[5] Daniel J. Bernstein. Cache-timing attacks on AES.
2005.

[6] Anubhav Bhatla, Navneet, and Biswabandan Panda.
The maya cache: A storage-efficient and secure fully-
associative last-level cache. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architec-
ture (ISCA), pages 32–44, 2024.

[7] Rahul Bodduna, Vinod Ganesan, Patanjali SLPSK, Ka-
makoti Veezhinathan, and Chester Rebeiro. Brutus:
Refuting the security claims of the cache timing ran-
domization countermeasure proposed in ceaser. IEEE
Computer Architecture Letters, 19(1):9–12, 2020.

[8] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. B. Robshaw, Y. Seurin, and
C. Vikkelsoe. Present: An ultra-lightweight block cipher.
In Cryptographic Hardware and Embedded Systems -
CHES 2007, pages 450–466, 2007.

[9] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Le-
ander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for perva-
sive computing applications (full version). IACR Cryp-
tol. ePrint Arch., page 529, 2012.

[10] Billy Brumley and Risto Hakala. Cache-timing template
attacks. In Advances in Cryptology - ASIACRYPT 2009,
pages 667–684, 12 2009.

[11] Christopher Celio, Pi-Feng Chiu, Krste Asanović,
Borivoje Nikolić, and David Patterson. Broom: An open-
source out-of-order processor with resilient low-voltage
operation in 28-nm cmos. IEEE Micro, 39(2):52–60,
2019.

[12] Anirban Chakraborty, Nimish Mishra, Sayandeep Saha,
Sarani Bhattacharya, and Debdeep Mukhopadhyay. Sys-
tematic evaluation of randomized cache designs against
cache occupancy. To appear In 35th USENIX Security
Symposium (USENIX Security 25), 2025.

[13] Ghada Dessouky, Emmanuel Stapf, Pouya Mahmoody,
Alexander Gruler, and Ahmad-Reza Sadeghi. Chunked-
cache: On-demand and scalable cache isolation for se-
curity architectures. In 29th Annual Network and Dis-
tributed System Security Symposium, NDSS 2022, San
Diego, California, USA, April 24-28, pages 1–18, 2022.

[14] Bourgeat et al. Casa: End-to-end quantitative security
analysis of randomly mapped caches. In 2020 53rd An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1110–1123, 2020.

[15] Jaleel et al. High performance cache replacement using
re-reference interval prediction (rrip). In Proceedings of
the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, page 60–71, 2010.

[16] Ristenpart et al. Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, page 199–212,
2009.

[17] Daniel Genkin, William Kosasih, Fangfei Liu, Anna
Trikalinou, Thomas Unterluggauer, and Yuval Yarom.
Cachefx: A framework for evaluating cache security.
In Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, ASIA CCS
’23, page 163–176, 2023.

[18] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria
Eichlseder, Thomas Unterluggauer, Stefan Mangard, and
Daniel Gruss. Scatter and split securely: Defeating
cache contention and occupancy attacks. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 2273–
2287, 2023.

[19] Nadja Ramhöj Holtryd, Madhavan Manivannan, and Per
Stenström. Scale: Secure and scalable cache partitioning.
In 2023 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 68–79, 2023.

[20] Yonas Kelemework and Alaa R. Alameldeen. IN-
TERFACE: An Indirect, Partitioned, Random, Fully-
Associative Cache to Avoid Shared Last-Level Cache
Attacks. In 2024 International Symposium on Secure
and Private Execution Environment Design (SEED),
pages 37–49, 2024.

[21] Tom Kessous and Niv Gilboa. Prune+plumtree - finding
eviction sets at scale. In 2024 IEEE Symposium on
Security and Privacy (SP), pages 3754–3772, 2024.

[22] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee.
Newcache: Secure cache architecture thwarting cache
side-channel attacks. IEEE Micro, 36(5):8–16, 2016.

18

[23] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In 2015 IEEE Symposium on Security and
Privacy, pages 605–622, 2015.

[24] Moritz Peters, Nicolas Gaudin, Jan Philipp Thoma,
Vianney Lapôtre, Pascal Cotret, Guy Gogniat, and Tim
Güneysu. On the effect of replacement policies on the
security of randomized cache architectures. In Proceed-
ings of the 19th ACM Asia Conference on Computer
and Communications Security, ASIA CCS ’24, page
483–497, New York, NY, USA, 2024. Association for
Computing Machinery.

[25] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede. Systematic analysis of randomization-
based protected cache architectures. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 987–1002,
2021.

[26] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede. Systematic analysis of randomization-
based protected cache architectures. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 987–1002,
2021.

[27] M.K. Qureshi, D. Thompson, and Y.N. Patt. The v-way
cache: demand-based associativity via global replace-
ment. In 32nd International Symposium on Computer
Architecture (ISCA’05), pages 544–555, 2005.

[28] Moinuddin K Qureshi. Ceaser: Mitigating conflict-
based cache attacks via encrypted-address and remap-
ping. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 775–
787, 2018.

[29] Moinuddin K. Qureshi. New attacks and defense for
encrypted-address cache. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture, ISCA
’19, page 360–371, New York, NY, USA, 2019.

[30] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE:
Mitigating Conflict-Based cache attacks with a practical
Fully-Associative design. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1379–1396,
2021.

[31] Gururaj Saileshwar and Moinuddin Qureshi. The Mi-
rage of breaking MIRAGE: Analyzing the modeling
pitfalls in emerging “attacks” on MIRAGE. IEEE Com-
puter Architecture Letters, pages 121–124, 2023.

[32] Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval
Yarom. Robust website fingerprinting through the cache
occupancy channel. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 639–656, 2019.

[33] Allan Snavely and Dean M. Tullsen. Symbiotic job-
scheduling for a simultaneous multithreaded processor.
SIGOPS Oper. Syst. Rev., 34(5):234–244, nov 2000.

[34] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao
Wang, and Peng Liu. Randomized last-level caches are
still vulnerable to cache side-channel attacks! but we
can fix it. In Proceedings - 2021 IEEE Symposium on
Security and Privacy, SP 2021, pages 955–969, 2021.

[35] Wei Song and Peng Liu. Dynamically finding minimal
eviction sets can be quicker than you think for Side-
Channel attacks against the LLC. In 22nd International
Symposium on Research in Attacks, Intrusions and De-
fenses (RAID 2019), pages 427–442, 2019.

[36] Wei Song, Zihan Xue, Jinchi Han, Zhenzhen Li, and
Peng Liu. Randomizing set-associative caches against
conflict-based cache side-channel attacks. IEEE Trans-
actions on Computers, 73(4):1019–1033, 2024.

[37] Florian Stolz, Jan Philipp Thoma, Pascal Sasdrich, and
Tim Güneysu. Risky translations: Securing tlbs against
timing side channels. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2023(1):1–31, 2023.

[38] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. Phan-
tomcache: Obfuscating cache conflicts with localized
randomization. Proceedings of Network and Distributed
System Security Symposium, pages 1–17, 2020.

[39] Jan Philipp Thoma, Christian Niesler, Dominic Funke,
Gregor Leander, Pierre Mayr, Nils Pohl, Lucas Davi,
and Tim Güneysu. ClepsydraCache – preventing cache
attacks with Time-Based evictions. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 1991–
2008, Anaheim, CA, August 2023.

[40] Thomas Unterluggauer, Austin Harris, Scott Constable,
Fangfei Liu, and Carlos Rozas. Chameleon Cache: Ap-
proximating Fully Associative Caches with Random Re-
placement to Prevent Contention-Based Cache Attacks .
In 2022 IEEE International Symposium on Secure and
Private Execution Environment Design (SEED), pages
13–24, 2022.

[41] Pepe Vila, Boris Köpf, and José Francisco Morales. The-
ory and practice of finding eviction sets. 2019 IEEE
Symposium on Security and Privacy (SP), pages 39–54,
2018.

[42] Zhenghong Wang and Ruby B. Lee. New cache designs
for thwarting software cache-based side channel attacks.
SIGARCH Comput. Archit. News, 35(2):494–505, 2007.

[43] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: Thwarting cache attacks via cache set

19

randomization. In 28th USENIX Security Symposium
(USENIX Security 19), pages 675–692, 2019.

[44] Mengjia Yan, Christopher W. Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn DNN architectures. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2003–2020,
2020.

[45] Fan Yao, Milos Doroslovacki, and Guru Venkataramani.
Are coherence protocol states vulnerable to informa-
tion leakage? In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 168–179, 2018.

[46] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel
attack. In Proceedings of the 23rd USENIX Security
Symposium, 2014, pages 719–732, 2014.

[47] Xingjian Zhang, Haochen Gong, Rui Chang, and Yajin
Zhou. Recast: Mitigating conflict-based cache attacks
through fine-grained dynamic mapping. IEEE Transac-
tions on Information Forensics and Security, 19:3758–
3771, 2024.

[48] Xingjian Zhang, Ziqi Yuan, Rui Chang, and Yajin Zhou.
Seeds of SEED: H2Cache: Building a Hybrid Ran-
domized Cache Hierarchy for Mitigating Cache Side-
Channel Attacks . In 2021 International Symposium
on Secure and Private Execution Environment Design
(SEED), pages 29–36, 2021.

20

	Introduction
	Key Insights and Contributions

	Background
	Threat Model
	LLC Side-Channel Attacks
	Scope
	Eviction Set Creation Algorithms
	Randomized LLC Designs

	Systematization of Randomized Caches
	Evaluation Strategy and Simulation Setup
	Metrics

	Knob 1: Skewing
	Random Skew Selection (RS)
	Load-aware Skew Selection (LA)

	Knob 2: Extra Invalid Tags (Inv)
	Decoupled tag store has no security impact
	Extra invalid tags is not a standalone knob
	Local Eviction (LE) vs. Global Eviction (GE)

	Knob 3: High Associativity (Ass)
	Knob 4: Replacement Policy
	Knob 5: Remapping
	Sensitivity to Cache Size

	The Knobs and Occupancy-based Attacks
	Open Problems
	Conclusions
	Acknowledgments
	Ethics Considerations
	Open Science
	Appendix: Evaluating Design Trade-offs
	Appendix: Impact of Warm-up States

