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Abstract—With the rise of Electric Vehicles (EV) and hence
Lithium-ion batteries, estimating the Remaining Useful Life
(RUL) of batteries has become critical to avoid a series of
safety-related problems caused by continual battery use after
its service life threshold. Battery capacity is used to describe
battery State-of-Health (SoC) however measurement of capacity
during the operation of EVs is difficult. We propose a method
that uses measurable features such as discharge time and battery
temperature to estimate RUL.
Several learning algorithms are implemented which include
Support Vector Regressors, Random Forests, Artificial Neural
Networks and Boosting methods. Test results show that the
proposed method estimates capacity accurately with little to no
hyperparameter tuning. The model predictions are seen to hold
for other batteries as well.
Model explainability is discussed in the context of the trained
models. Insights drawn from Exploratory Data Analysis allow us
to provide explanations for the models’ working. Some measures
for extending RUL are also suggested.
Index Terms—Li-ion batteries, RUL, State-of-Health (SoC), XAI

I. INTRODUCTION

The rapid increase in automobiles worldwide has led to serious
concerns regarding air pollution, global warming and depletion
of natural resources. Such concerns have resulted in the need
to develop safe, efficient and environmental-friendly modes
of transportation. As the world embraces the rise of electric
vehicles, Li-ion batteries are at the helm of fast-paced develop-
ment. Among all the state-of-the-art storage technologies, Li-
ion batteries have the highest level of energy storage density
along with additional advantages such as low self-discharge,
very long lifetimes and cycling performances.
For these reasons, it is essential that we have an efficient
algorithm for predicting an EV battery’s Remaining Useful
Life (RUL) with high accuracy using features such as Voltage,
Current and Temperature measured over a few cycles.
One charge cycle is the period of use from fully charged to
discharged and fully recharged again. An average Li-ion can
typically last for 300-500 charge cycles with each charge cycle
reducing battery capacity [1]. A battery becomes practically
unusable when its capacity drops below a certain percentage
of the total capacity, depending on the manufacturer and the

usage of the given battery. 70% is used as the threshold in the
following study.

II. BACKGROUND AND PRIOR WORK

Researchers have been looking for various methods to predict
the RUL of a Li-ion battery based on measurable features.
Each method aims to minimize the loss associated with the
predictions made by the regression model used.
Saha and Goebel came up with an approach to predict End of
Discharge (EoD) time of Li-ion batteries [2]. Two regression
algorithms were selected: a low complexity Polynomial Re-
gression Model, and an Artificial Neural Network representing
a more complex approach. To compare the results of the above
models, a Particle Filter based benchmark algorithm was used
which relies on empirical models and measurement data to
predict battery EoD.
Saha, Goebel and Saxena, in their paper presented at the MFPT
2008 [3], discussed two new approaches for predicting the
RUL of a battery. The first is a Relevance Vector Machine
(RVM), a Bayesian form of the Support Vector Machine
(SVM). RVMs attempt to address the issue of the lack of
probabilistic output of SVMs in a Bayesian framework and use
a lot fewer kernel functions. The second is a Gaussian Progress
Regression model, which works well on small datasets and can
provide uncertainty measurements on the predictions.

III. EXPLORATORY DATA ANALYSIS

The dataset used for the project was downloaded from this link
[4] and was in MATLAB format. Python’s pymatreader
module was used to help load data for further processing.
The dataset consisted of degradation data for 4 18650 Li-
ion batteries discharged at a constant current of 2A until the
voltage fell to 2.7V, 2.5V, 2.2V and 2.5V for each battery.
The batteries were subjected to 3 operational profiles - charge,
discharge and impedance at room temperature.

type ambient temp data
charge 24 {’Voltage measured’: [3.70, 3.33...
discharge 24 {’Voltage measured’: [4.20, 4.20...
impedance 24 {’Sense current’: [(839.74-31.55j..

Table I: Few rows from the dataset

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery


A. Data and Datatypes

The dataset contained an equal amount of data on charging
and discharging operational profiles (Fig. 1). This was con-
sistent with the fact that charging and discharging was done
one after another. There was almost double the amount of
impedance data. This was because impedance measurements
were performed after both charge and discharge profiles.

Fig. 1: Cycle Types

1) Charging Mode
During the charging cycle, the battery was charged in constant
current (CC) mode till the voltage reached 4.2V, and subse-
quently in constant voltage (CV) mode till the current dropped
to 20mA (see Fig. 2).

Fig. 2: Comparing Voltage and Current Profiles
for Cycle 0

The data present under the charging cycle label included
voltage and current at the battery, battery temperature, voltage
and current at the charger as time-series data and an array
labelled Time which contained time (in seconds) at which
the measurements were made. Voltage and current at the load
were analysed since measurements at the charger would be
similar. As the battery deteriorated due to repeated charging-
discharging, the time taken in constant current mode increased.
Battery temperature did not show a strong correlation with
battery degradation although the general trend was similar:
rise in temperature during constant current phase and fall in
constant voltage phase (Fig. 3).

Fig. 3: Temperature profile for a few charging cycles

2) Impedance Mode
Impedance measurements were performed using Electro-
chemical Impedance Spectroscopy (EIS) frequency sweeps
between 0.1Hz and 5kHz. In EIS, the battery is excited
using a small AC perturbation and its response characterises
battery impedance. Impedance measurements included sense
current, battery current, current ratio (ratio of sense current
and battery current), battery impedance, rectified impedance,
estimated electrolytic and charge-transfer resistance (Re and
Rct respectively). Out of all these features, Re and Rct
were float values reported once per impedance cycle while
the remaining were an array of complex values at select
frequencies. The electrolytic and charge-transfer resistances
were seen to increase as the battery degrades (Fig. 4 and Fig.
5). This is due to electrolytic depletion.

Fig. 4: Increasing trend in Electrolytic Resistance

Fig. 5: Increasing trend in Charge-transfer Resistance



B. Discharge Mode

During discharge mode, measurements included discharge
voltage and current at the battery and load, battery temper-
ature, battery capacity (Ahr) and measurement times. Just like
the charge cycle, measurements at the battery were analysed.

Fig. 6: Discharge Voltage measured at the Battery

The plot of voltage measured at the battery (Fig. 6) can be
divided into 3 regions:

• Pseudo Linear Region I due to the sudden application of
load current. (Fig. 7) shows that the slope of the region
increases as the battery degrades. The slope of this region
can also be connected to battery impedance

• Pseudo Linear Region II of reduced slope up to the knee
point

• Steep exponential-like drop-off after the knee point
The load is switched off once the battery voltage drops to
2.6V. This is because the Discharge Cut-off Voltage of the
Li-ion battery has been reached. The batteries under test were
discharged beyond the discharge cut-off voltage to accelerate
battery aging. Increase in battery terminal voltage beyond
this point can be attributed to a diffusion of acid from the
electrolyte to the plates. Fig. 7 indicates that total discharge
time decreases as the battery degrades.

Fig. 7: Discharge Voltage measured at the Battery

Unlike the charging cycle, (Fig. 8) indicates that the maximum
temperature attained by the battery during discharge increases
due to degradation. Time taken to attain the maximum tem-
perature is seen to decrease.

Fig. 8: Battery Temperature during discharge

Fig. 9: Battery Capacity

Battery capacity is observed to decrease steadily as the battery
deteriorates. The experiments are stopped at 30% fade in
capacity beyond which the Li-ion battery is said to be unusable
(Fig. 9).

IV. MACHINE LEARNING WORKFLOW

From the previous section, it was evident that Battery Capac-
ity could be used to estimate RUL. However, the measurement
of battery capacity when an electric vehicle is running is
difficult and in such cases, an indirect approach must be
adopted. Features extracted from discharge mode data serve
as a starting point to estimate capacity. Capacity is then used
for RUL diagnosis.

A. Feature Extraction

The following features are extracted from discharge mode data
after normalization:

• Time at which the battery is completely discharged
• Time at which the battery voltage hits some specified

values between 2.7V and 4V. The number of time samples
is a hyperparameter that can be tuned. 16 had been chosen
for the purposes of analysis

• Time at which the battery reaches its maximum temper-
ature

• Maximum battery temperature



Fig. 10: Correlation Matrix of Extracted Features

There was high correlation between the extracted features (Fig.
10) and Principal Component Analysis (PCA) was used
to reduce dimensionality of the data and extract uncorrelated
features. PCA is performed by computing the eigenvectors of
the data’s Covariance Matrix. The eigenvectors corresponding
to the largest eigenvalues are retained with the reconstruction
error being proportional to the magnitude of the remaining
eigenvalues.
1% of the standard deviation of L2-norm of the input features
was used as the threshold for reconstruction. The reduced
space consisted of only 8 features which can be used by
learning models (Reconstruction error vs Number of retained
features illustrated in Supplementary Fig. 1).

B. Learning Models

1) Support Vector Regression
Support Vector Machines are based on the concept of a
maximum-margin classifier. Although the decision boundary
for a vanilla SVM is linear, the Kernel trick allows for non-
linearities by transforming to a higher dimensional feature
space. Support Vector Regressors are the equivalents of SVMs
for regression tasks. A Radial Basis Kernel was chosen for
this task.

2) Multilayer Perceptron
A Multilayer Perceptron (MLP) is a feedforward network
which uses the Backpropagation algorithm for training. The
model consists of a network of interconnected neurons ar-
ranged in layers. There is a single input and output layer in
an MLP but multiple possible hidden layers. The outputs of
neurons in one layer are linearly combined and passed through
a non-linear activation function before being fed to the neurons
in the next layer. Python’s scikit-learn module provides
a prebuilt implementation of MLPs which can be integrated
into the workflow directly (Fig. 11).

Fig. 11: The MLP model used, consisting of a single hidden
layer with 100 neurons (h-1 to h-100)

The inputs propagate through the model before arriving at the
last layer. During training, the model’s performance is scored
using a loss metric. Backpropagation is used to improve model
performance by updating neuron weights to optimise the loss
function which was chosen to be Mean Squared Error.

3) Long Short-term Memory (LSTM)

An LSTM model is a Recurrent Neural Network architecture
with feedback connections in addition to feedforward connec-
tions.
The model consists of an LSTM layer followed by a Dense
layer. Hyperparameter tuning was performed using hyperpa-
rameter grids and the best results were obtained on using 8
neurons in the LSTM layer and 8 neurons in the Dense layer
(Fig. 12). The LSTM layer had a tanh activation while the
Recurrent layer had a sigmoid activation. Similar to the MLP,
Mean Squared Error was chosen as the loss function.

Fig. 12: The LSTM model architecture used, consisting of an
LSTM layer and a Dense layer with 8 units each



4) Random Forest Regression
Random Forests are an Ensemble Learning decision-tree based
method for classification and regression tasks. Random Forests
work using the Bootstrap Aggregation, or Bagging ensemble
technique.
Bootstrap: Several decision trees are generated and trained
independently using rows sampled from the original dataset.
Aggregation: The outputs from all decision trees are then
pooled to generate the final output.
Random Forests generally perform better than simple decision
trees but are outperformed by gradient boosted trees, which
are discussed in Section-IV-B5. This is also supported by the
results in Table-II.

5) Boosting Methods
Boosting is another Ensemble Learning method that combines
a set of weak learners into a strong learner to minimize training
errors. Each model tries to compensate for the weaknesses of
its predecessor. With each iteration, the weak rules from each
classifier are combined to form one strong prediction rule.
Boosting algorithms differ in how they create and aggregate
weak learners during the sequential process. Three types of
boosting methods which were used for predicting Capacity
using the selected features were:

1) Adaptive Boosting (AdaBoost): This method operates it-
eratively, identifying misclassified data points and adjust-
ing their weights to minimize the training error. AdaBoost
is adaptive in the sense that subsequent weak learners
are tweaked in favor of those instances misclassified by
previous classifiers.

2) Gradient Boosting: Works by sequentially adding predic-
tors to an ensemble, with each one correcting for the
errors of its predecessor. However, instead of changing
weights of data points like AdaBoost, the gradient boost-
ing trains on the residual errors of the previous predictor.

3) XGBoost: It is an implementation of gradient boosting
designed for computational speed and scale. XGBoost
leverages multiple cores on the CPU, allowing for learn-
ing to occur in parallel during training.

C. Model Explainability
Machine Learning models are often described as ’black boxes’
because the mechanism by which they arrive at results is
unknown. Explainable AI aims to come up with a set of tools
to produce explainable models achieving high performance.
Partial Dependence Plots (PDPs) are one such tool that
show the effect of each feature on the output, assuming other
features to be held constant. PDPs for the Support Vector
Regressor were made for each of the 8 features. Two such
PDPs are shown in Fig. 13 and Fig. 14. Feature 2 can
be associated with the maximum temperature achieved by
the battery while feature 5 can be associated with the total
discharge time. This is consistent with observed trends in Fig.
7 and Fig. 8. Similar plots were also made for other models.
Supplementary Fig. 2 compares the PDPs for the Random
Forest, XGBoost and LightGBM Regression models.

Fig. 13: SVR Partial Dependence Plot for Feature 2

Fig. 14: SVR Partial Dependence Plot for Feature 5

V. EXPERIMENTS AND RESULTS

A total of 7 regression models were trained on data from cell
number 5 and tested on data from cells numbered 6, 7 and 18.
Model performance was characterised in terms of Root Mean
Squared Error and Coefficient of Determination (R2 Score)
(Table-II).

Model RMSE R2 Score
XGBoost Regressor 0.0222 0.9809
Random Forest Regressor 0.0235 0.9785
Artificial Neural Network 0.0263 0.9731
LightGBM Regressor 0.0272 0.9712
AdaBoost Regressor 0.0292 0.9668
CatBoost Regressor 0.0364 0.9485
Support Vector Regressor 0.0692 0.8140

Table II: Model results on Cell Number 7

When run on other cells, it was observed that the XGBoost and
Random Forest models achieved the best results. Evaluation
results on cell numbers 6, 7 and 18 are described in Supple-
mentary Tables 1, 2 and 3. Supplementary Fig. 3 shows the
predicted vs. true labels plots for the Random Forest, XGBoost
and LightGBM models on the data from cell number 7.

GENERAL LOSS METRICS

• RMSE =
√

1
n

∑n
i=1(yi − predicted)2

• SStotal =
∑

i(yi − ȳ)2

• SSresidual =
∑

i(yi − predicted)2

• R2Score = 1 - SSresidual

SStotal



VI. LEARNING, CONCLUSION AND FUTURE WORK

A. Increasing Battery RUL

From the analysis so far, some measures to increase RUL
can be suggested. Battery temperature has been shown to affect
capacity and hence, thermal management is critical. Discharge
beyond the cutoff voltage results in accelerated aging and can
be prevented by charging before depletion. Although excessive
charging must also be prevented as increasing the number of
charge cycles results in reduced battery state of health.

B. Learning

Following a data-driven approach has allowed us to gain a
basic understanding of the factors involved in Li-ion battery
degradation. Without a thorough EDA, we would not have
been able to recognise features of importance that enabled us
to train learning models. The importance of model explain-
ability was highlighted because explainable models are easy
to trust. In that regard, the project reminded us that simple
models can be effective and are easier to relate to.

C. Conclusion

The effects of Li-ion battery degradation on charging and
discharging parameters were analysed. Battery capacity was
recognised as a suitable measure of battery health. A machine
learning pipeline that uses discharge parameters was used
to estimate battery capacity and hence, RUL. The features
extracted were shown to generalize across multiple batteries.
Model explainability was discussed using insights from Ex-
ploratory Data Analysis. Measures for increasing RUL were
also discussed.

D. Future Work

The entire analysis was carried out on Li-ion batteries under a
constant 2A load. This allowed us to ignore discharge current
in the feature extraction stage. In realistic scenarios, this is
not the case and the pipeline must be tested under varying
loads to model user driving behaviour. In the experimental
protocol, the batteries were consistently discharged beyond the
discharge cutoff voltage. However, the model must also be able
to account for user charging behaviour.
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