
EE677 Foundations of VLSI CAD
Implementation, Visualisation and Analysis of

Various Circuit Partitioning Algorithms

Rohan Rajesh Kalbag, 20D170033
Anubhav Bhatla, 200070008

December 9, 2022

Abstract: Often the VLSI design schematic of a system cannot be emulat-
ed/verified on a single FPGA, due to the finite number of programmable logic
elements present in the FPGA. Interconnections between circuit elements can
be conveniently represented using graphs, Logic gates, LUTs, FFs, and other
entities present in the design can be modelled as graph nodes, and the inter-
connections are modelled as edges, if there are multiple parallel interconnects
between two entities, we can represent the same using weighted graphs. Sup-
pose we wish to computerize dividing the design among 2 FPGAs using CAD;
we can model the problem as a graph partitioning problem.

1

1 Acknowledgement

We want to thank Prof. Virendra Singh for giving us this opportunity
to explore the extremely important field of VLSI Computer-Aided Design
Automation through a project such as this.

2 Objectives of Project

In this project, we implement graph partitioning algorithms and heuristics
like the Kernighan-Lin Algorithm, Clustering Based Heuristic, Ha-
gen Kahng EIG Algorithm and compare, analyse their capability in par-
titioning a given graph network into two partitions and visualise them using
plotting tools of matplotlib, networkx libraries of Python.

3 Clustering-based Partitioning

In this heuristic partitioning method, we start with each node having its own
unique partition. We look for the edge with the highest weight, and the two
nodes connected to this edge are joined into a single partition, the second
node is assigned the partition name of the first node of the collapsed edge.
This is repeated till we are left with only two partitions. Consider the graph
given below:

2

On applying the clustering algorithm, we get the following final graph:

The final cost of this partition comes out to be 15 units. In general, the
clustering-based partition method leads to highly unbalanced partitions
which majorly consist of (n - 1, 1) splits such as the above example.

4 Kernighan-Lin (KL) Partitioning

4.1 Equal Partitioning

In this method of partitioning for a graph of 2n nodes, we take a random
equal initial split of n nodes each and partition the graph into two partitions
P1 and P2. We iterate over n, and for every node a, we calculate the internal
and external edge costs for it denoted by Ea and Eb. We then calculate
Da = Ea − Ia for the node. We calculate the cost reduction metric for
swapping nodes a and b denoted by gab = Da + Db − 2cab where cab is the
weight corresponding to an edge between a and b. We swap the nodes with
the max value of gsel = gab, then we calculate the updated values of Da for all
nodes a and so on. We keep track of the prefix sum G of sum of all gsel over
all iterations. We define the maximal index m for which the prefix sum is
maximized and only perform the swaps corresponding to gab for all iterations
i ≤ m and ignore the rest. This gives a configuration with the minimized
cut size but the same partition. Consider the graph given below, which has
an initial cut size of 64

3

After applying the KL algorithm, we obtain the below graph which has a
reduced corresponding cut size of 40.

4

4.2 Unequal Partitioning

We partition the graph into n1 and n2 nodes each and then add |n1−n2| nodes
to the smaller partition with no interconnections (edges). We then apply the
KL algorithm for equal partitions as described above, perform the swaps and
remove the dummy added edges after the swaps are completed to obtain the
minimized cut size configuration. Consider the unequal partitioning of the
below graph

The optimized partition after adding the dummy nodes and performing KL
algorithm can be found below

5

The optimized partition after removing the dummy nodes is as shown below
and works as intended and the cut size reduces.

5 Hagen-Kahng EIG Partitioning

We start by defining the Degree Matrix wherein the entry Deg[i][i] is equal
to the sum of weights of the edges attached to the ith node and the remaining
entries being 0. Similarly, we also define the Adjacency Matrix as Adj[i][j]
equal to the weight of the edge between nodes i and j and the remaining
entries being 0. We now define the Laplacian matrix as:

Lap = Deg − Adj (1)

We now find the eigenvalues and eigenvectors for this Laplacian matrix and
choose the second smallest eigenvalue. The eigenvector corresponding
to this eigenvalue now consists of values ∈ [−1, 1]. This vector’s ith value
corresponds to the ith node. We aim to find the best partition between these
values, dividing the nodes into two partitions. Consider the graph below:

6

On applying the EIG algorithm, we get the following final graph:

This partition is obtained by moving the nodes corresponding to the three
smallest values in the above-mentioned eigenvector to partition P1. The final
cost of this partition comes out to be 48 units.

6 Benchmarking

We generate connected Erdos - Renyi random graphs with a specified num-
ber of edges with randomly seeded edge weights varying from 1 to 7.

7

We measure metrics for 16 generated graphs, varying from 10 to 25 nodes
with random weights. We decided not to compare the Clustering-based al-
gorithm with the other two partitioning algorithms because the Clustering
algorithm produced highly unequal partitions consisting majorly of (n-1,
1) splits, which may is not practical for real-life systems and beats the goal
of partitioning. We continue with the other two algorithms, comparing them
using the metrics and tabulate cut size and ratio cut for each configuration
of the benchmark graph. The ratio cut is given by Ratio Cut = CutSize

(s)(n−s)
,

where s and n− s are the sizes of the two partitions.

Let’s start by considering the results of the benchmark graph with 15 nodes.
Given below are all the cut size and ratio cut for each configuration start
of the benchmark graph for either of the algorithms:

Partition Sizes KL EIG
P1-P2 Cutsize Ratio Cut Cutsize Ratio Cut
1-14 11 0.786 30 2.143
2-13 29 1.115 59 2.269
3-12 40 1.111 66 1.833
4-11 50 1.136 72 1.636
5-10 63 1.260 94 1.880
6-9 63 1.167 114 2.111
7-8 66 1.179 107 1.911
8-7 66 1.179 116 2.071
9-6 60 1.111 107 1.981
10-5 47 0.940 94 1.880
11-4 42 0.955 91 2.068
12-3 38 1.056 65 1.806
13-2 28 1.077 40 1.538
14-1 11 0.786 18 1.286

In the above table, we observe that KL gives us better overall cut sizes
and ratio cuts than EIG and thus leads to more cost-efficient partitioning.
However, KL takes a total of 579ms to run the entire benchmark compared
to 102ms for the EIG algorithm. Therefore, we observe a trade-off between
cost and time for the two algorithms, with KL being more cost-efficient and
EIG being more time-efficient.

8

