
The Maya Cache: A Storage-efficient and Secure
Fully-associative Last-level Cache

Anubhav Bhatla*
Indian Institute of Technology Bombay

Mumbai, India
bhatlaanubhav2001@gmail.com

Navneet*
Indian Institute of Technology Bombay

Mumbai, India
krnavneet13@gmail.com

Biswabandan Panda
Indian Institute of Technology Bombay

Mumbai, India
biswa@cse.iitb.ac.in

Abstract—The last-level cache is vulnerable to cross-core
conflict-based attacks as the cache is shared among multiple
cores. A fully associative last-level cache with a random replace-
ment policy can mitigate these attacks. However, it is impractical
to design a large last-level cache that is fully associative. One
of the recent works, named Mirage, provides an illusion of
a fully associative cache with a decoupled tag and data store
and a random replacement policy. However, it incurs a storage
overhead of 20%, static power overhead of 18.16%, and area
overhead of 6.86% compared to a non-secure baseline cache of
16MB. One of the primary contributors to the additional storage
requirements is the usage of extra invalid tag entries that are
used in a skewed way without changing the number of data
store entries. These invalid tag entries provide a strong security
guarantee. We observe that more than 80% of last-level cache’s
data store entries are dead on arrival, providing negligible utility
in terms of performance improvement as they do not get reused
in their lifetimes. Also, in general, the data store entries occupy
≈ eight times more storage than tag store entries. Based on
these observations, we propose Maya, a storage efficient and
yet secure last-level randomized cache that compensates for the
additional storage of tag store entries by using fewer data store
entries. Maya increases the tag store entries for security and reuse
detection and uses fewer data store entries that only store the
reused data. Our proposal provides a strong security guarantee,
which is one set-associative eviction in 1032 line fills at the last-
level cache. This is equivalent to a line installed once in 1016

years to mount an eviction attack. Maya provides this security
guarantee with a 12MB data store that occupies 28.11% less
area and 5.46% less static power when compared to a non-secure
baseline of 16MB cache.

Index Terms—Cache, Security, Performance

I. INTRODUCTION

Modern processors use multiple levels of caches to hide
the long latency main memory accesses. Typically, the level-1
and level-2 (L1 and L2) caches are private to the core, and the
last-level cache (LLC) is shared across all the cores. Cross-
core eviction-based side-channel attacks [22] [17] can cause
controlled contention at the LLC sets and later can observe
the effect of contention by measuring the latency differences
between an LLC hit and an LLC miss. Randomized LLC
designs are a promising approach to mitigate contention-based
cache attacks. Randomized LLCs like CEASER, CEASER-S,
Scatter-Cache [26], [27], [36] randomize the address to cache
set mapping. However, these designs are prone to probabilistic

*Both authors contributed equally

cache contention attacks and are not secure [7], [12], [24].
The recently proposed SassCache [14] incurs a significant
performance slowdown of more than 4% when evaluated on
all the memory-intensive SPEC CPU2017 [2] and GAP [4]
homogeneous mixes on an 8-core system.

Mirage [29] is a randomized LLC that provides the illusion
of a fully associative cache, and it uses a random replacement
policy so that an attacker cannot gather any information about
a cache line address. Mirage is motivated by the V-way
cache [25] and retains the practical set-associative lookups
by decoupling placement and replacement from tag store to
data store. Mirage uses a set-associative tag-store that over-
provisions invalid tags in sets and with load balancing that
guarantees new addresses are always filled into invalid tags
without causing any conflicts. Cache fills result in global
evictions, where a replacement candidate is selected randomly
from the entire cache. Mirage guarantees global replacement of
cache lines for the lifetime of a computer system; eliminating
conflict-based attacks. Note that Mirage does not mitigate
occupancy attacks and even a fully associative cache is prone
to occupancy attacks [32].
The Problem. Mirage provides the illusion of a fully associa-
tive LLC, incurs a marginal performance overhead, and hence
provides a sweet spot in terms of security and performance.
However, it incurs an additional storage of 20% at the LLC
with a static power overhead of 18.16%, which is a costly
tradeoff. For example, for an 8-core system with 16MB
baseline LLC, the combined storage of tag store and data
store is 16.91 MB, whereas Mirage has a storage requirement
of 20.31 MB. This additional storage requirement leads to
an increase in static power consumption, from 622mW with
the baseline 16MB LLC to 735mW with the Mirage cache.
The requirement increases significantly for a large LLC. For
a 32-core system with 32 2MB LLC slices, the baseline LLC
requires a storage of 67.63MB of tag store plus data store,
whereas Mirage requires a storage of 81.25MB LLC space,
an additional 13.62MB LLC, which is extremely high.
Our goal is to propose an LLC design that can provide the
illusion of a fully associative cache and, hence, the security
guarantee without significant storage, power, and performance
overhead. Note that one can argue for reducing the overall
capacity of the Mirage cache and getting storage overhead
similar to the baseline. According to our simulations, this

0

20

40

60

80

100

%
 o

f
d

ea
d

 b
lo

ck
s BASELINE MIRAGE

Fig. 1. Percentage of dead blocks inserted into the LLC for 15 memory intensive SPEC CPU2017 [2] benchmarks and five GAP [4] benchmarks on a
single core system with a 2MB baseline and Mirage LLCs. The dead block percentage for a given benchmark is the average of dead blocks across all the
sim-points [2], [4] of a benchmark.

approach leads to an average performance slowdown of around
5%. This slowdown is high as the micro-architecture commu-
nity has been pushing the LLC performance for the last two
decades to achieve performance closer to Belady’s policy [31].

Our observations. Mirage increases the tag entries and pro-
vides extra tags in the form of invalid tags to provide security.
However, it does not change the data store entries, leading to
additional storage requirements. Figure 1 shows the fraction
of data store entries that are dead (not reused after they are
installed into the LLC) with the baseline cache and the Mirage
for SPEC CPU2017 [2] and GAP [4] benchmarks. On average,
more than 80% of the data entries are dead, occupying the LLC
data store. This insight is not new and is well-established in
the micro-architecture community.

Our approach. We propose Maya, a secure and storage-
efficient randomized LLC that provides the illusion of a fully
associative LLC. Maya uses a smaller data store compared
to the baseline, with additional tag entries for security and
tracking reuse to avoid any performance overhead due to the
reduced data store size. In general, data store entries occupy
eight times more storage than tag store entries. So, we can get
the maximum benefit in terms of storage neutrality (compared
to a non-secure LLC) if we optimize for the data store entries.
Second, as most of the data is dead on arrival, these data-store
entries are expendable. So, if we can use the extra tags to
manage the remainder of the data store intelligently, it is a win-
win tradeoff in terms of security, performance, and storage.

The core idea of Maya is motivated by the Reuse Cache
[5], where we install a cache line in the data store only after
it gets a reuse. To detect the reuse behavior, it uses additional
tag-only entries (on top of invalid tag entries) that monitor the
reuse behavior, and then on reuse, a data entry is allocated.
Maya uses a decoupled tag and data store design. In general,
we observe that the Maya cache provides a similar security
guarantee as Mirage because the ratio of valid tags to invalid
tags at the tag store is similar to Mirage’s ratio of valid to
invalid tags. For shared memory attacks, the LLC fills are
isolated by their respective security domain ID. Overall, we
make the following contributions:
(i) We propose Maya, a secure, fully associative, and random-

ized LLC, which is storage-efficient. The crux of our proposal
is a decoupled tag and data store with additional tag entries
but fewer data entries (Section III).
(ii) We argue about the security guarantee of Maya in terms
of the number of LLC line installs required to mount an
eviction-based attack. We prove that such an attacker must
perform more than 1032 LLC line installs (around 1016 years,
assuming one LLC fill takes an optimistic one ns.) to get
one set-associative eviction, which is larger than the system
lifetime (Section IV).
(iii) Maya provides a strong security guarantee without addi-
tional storage (storage savings of 2%). Maya saves the LLC
area by 28.11%, and leakage power by 5.46% (Section V).

II. BACKGROUND

Threat model. The attacker can mount all the possible
LLC contention attacks that exploit a timing channel, such
as eviction-based and flush-based attacks. She is not capable
of mounting cache occupancy-based attacks. For eviction and
occupancy-based attacks, she is not restricted by time to form
an eviction set and then attack the victim.

A. LLC Contention Attacks

Eviction-based cache attacks. In eviction-based attacks,
an attacker fills its data into an LLC that conflicts with the
victim’s data. Later, in the Probe step, the attacker re-accesses
its data, and if it observes longer latency, then it means that
the victim has evicted some of the attacker’s lines [22].
Shared memory-based attacks. In a shared memory-based
attack (like Flush+Reload [38]), an attacker shares its address
space with the victim (e.g., shared libraries). The attacker
flushes cache lines shared by both the attacker and the victim
and observes the victim’s access to the same cache lines by
observing memory access latency.
Occupancy-based attacks. An LLC occupancy-based attacker
observes the LLC space occupied by the victim application.
Recent attacks on website fingerprinting [32] exploit the
dynamic LLC usage between the attacker and the victim. Note
that an occupancy-based attack is possible even with a fully
associative cache.

Flush-based eviction attack. A recent work [12] shows that
an attacker can mount an eviction-based attack by flushing
her private data while creating an eviction set. This method
is faster than conventional eviction attacks like Prime+Probe.
Note that this is different from shared memory-based flush
attacks, where the attacker flushes shared LLC lines.

B. Recent Advances in Randomized LLCs

CEASER [26]. CEASER encrypts a physical address based on
a key to get the encrypted address on an LLC access. Even in
the encrypted address space, LLC conflicts are possible, and
an eviction-based attacker can mount an attack. To mitigate
eviction-based attacks, CEASER remaps cache lines with a
different key after a fixed interval known as the remapping
period.
CEASER-S [27] and Scatter-Cache [36]. CEASER-S and
Scatter-Cache go one step ahead of CEASER and propose
randomization with a skewed associative LLC to mitigate an
agile eviction-based LLC attacker that can attack CEASER
with slow remapping rates. As per [35], an LLC line should
be remapped after 14 and 39 LLC evictions for CEASER-S
and Scatter-Cache, respectively.
Mirage [29]. Mirage proposes a fully associative LLC that
uses multi-index randomization with a global eviction policy.
It provides a proxy for a fully associative LLC with the help
of a decoupled tag store and data store. It maintains a set-
associative tag lookup and global random eviction for data
stores using pointer-based indirection. Mirage uses additional
invalid tags in a skewed associative tag-store design where
cache lines are installed without set conflict. It also uses a load-
aware skew-selection policy that guarantees the availability of
sets with invalid tags. Mirage is the secure randomized LLC
with a security guarantee of one line install in 1017 years for
mounting an eviction attack. However, it incurs 20% storage
overhead.

III. THE MAYA CACHE

The Maya cache design has four key components:
(i) It uses a skewed-associative decoupled tag store with
additional invalid tag entries for security. It also uses extra
tag entries for reuse detection.
(ii) The tag store of Maya uses a new priority bit for each
tag entry. Maya stores two kinds of tag entries: priority-0 and
priority-1. Priority-0 entries have no associated data entry in
the data store until they get a future tag hit and are promoted
to priority-1 entries. Priority-1 entries are the entries in the tag
store that have corresponding data-store entries.
(iii) For the tag store, Maya uses an insertion policy that keeps
tag priorities in mind and is also equipped with load-awareness
similar to Mirage [29]. Maya uses global random tag eviction
in the tag store for only priority-0 entries. This ensures a fixed
number of invalid tags are available in the tag store to avoid
set-associative-evictions (SAEs).
(iv) Motivated by the Reuse Cache [5], Maya uses a smaller
data store that stores entries, which will be reused. Maya uses
a global random data eviction policy that evicts a data entry

randomly downgrading its corresponding priority-1 tag entry
to priority-0.

A. Tag and data store design

Maya uses a skewed associative and decoupled cache design
where each tag entry stores a forward pointer (FPTR), which
allows it to point to an arbitrary data entry. A security domain
ID (SDID) is also stored for each tag entry to help distinguish
between copies brought in by different domains. This helps in
mitigating shared memory attacks like Flush+Reload [38].
Skewed-associative design. The tag store is split into two
skews [30], each with its independent hash function used to
determine the set mapping for a cache line. Each incoming
cache line now maps to a set in each of the two skews and
can appropriately choose between the two sets.
Priority bit. We introduce an additional bit for each tag store
entry, called the priority bit. This bit indicates if a valid tag
entry has a corresponding valid data entry in the data store.
If the priority bit for a valid tag entry is ‘0’, it indicates no
valid data entry exists corresponding to this tag. In this case,
the forward pointer is invalid. On the contrary, if the priority
bit is ‘1’, a valid data entry exists in the data store, along with
valid forward and reverse pointers linking these tag store and
data store entries.
Extra tag store ways. In the Maya cache design, we provide
extra invalid tag ways, similar to Mirage. We also provision
additional ways, termed as reuse ways, to keep track of valid
entries with priority-bit set to zero. These entries do not have
a corresponding valid entry in the data store and, thus, an
invalid forward pointer. Once such an entry gets a hit in the
tag store, its priority is set to ‘1’, and a valid data entry is
assigned, along with appropriate forward and reverse pointers.
The number of priority-1 entries in the tag store is the same as
the total number of data store entries. The cache also holds a
fixed number of priority-0 entries to ensure that the data store
is only used to store ”useful” entries. Additional invalid tags
are reserved such that on every line install, there is at least one
invalid tag available, and therefore, no SAE occurs. This helps
provide security against eviction-based attacks. Note that the
sets in the tag store are not statically partitioned for storing
priority-0, priority-1, and invalid tag entries. Rather, the total
number of entries of each type is kept constant in the tag store
once the cache is operating at its maximum capacity.
Decoupled data store. As the tag store is decoupled from the
data store, and the data store has fewer entries than the tag
store, Maya needs to store the reverse pointer (RPTR), which
points to the corresponding tag entry, for each entry in the data
store. Figure 2 shows an overview of the Maya cache design.

B. Insertion and eviction policies

Insertion policy. Because of the skewed associative design
of the Maya tag store, each new cache line gets mapped
to two different sets (one in each skew). The decision of
the skew chosen directly affects the distribution of valid tag
entries (both priority-0 and priority-1) across the sets. This,

FPTRTAGPRIORITY = '1'

DATARPTR

N/ATAGPRIORITY = '0'

Random global
data eviction

Skew-1

Skew-0Tag Store

Data Store

Line Install

Rf1

Rf2

Fig. 2. Overview of the Maya cache design. White blocks represent invalid tag
entries, yellow represents priority-0 tag entries, and green represents priority-
1 tag entries.

in turn, affects the distribution of invalid tag entries available
in each set, which is crucial for preventing SAEs and thus
maintaining security. Previous works [27], [36] use random
skew-selection, which randomly picks one of the skews for
the incoming line to be installed in. However, such a policy
could lead to an imbalance in the number of available invalid
tags, where some sets may end up with no invalid tag and
thus become prone to an SAE. Inspired by Mirage, we use
a load-aware skew-selection policy, which fills the incoming
line into the set with more invalid tags. This promotes balanced
use of tags across sets, and an SAE can occur only if both the
mapped sets do not have any invalid tag available, which is a
rare occurrence. Experimental results show that with a load-
aware skew selection and six extra invalid tag entries per skew,
an SAE occurs once in 1016 years, well beyond the system
lifetime.

Note that when a cache line gets filled into the LLC, the
corresponding tag is stored in the tag store, with its priority
bit set to 0. However, the associated data is not yet stored in
the data store, which results in an LLC miss. Subsequently,
when a request arrives again for the same tag, the priority is
set to 1, the corresponding data is brought into the data store,
and the data is available in the LLC for subsequent accesses.
Eviction policy. Maya uses a random global eviction policy,
which chooses a random eviction candidate from the entire
data store to ensure no information is leaked to an attacker.
We term this as global random data eviction. When a priority-
0 entry gets a hit in the tag store and is upgraded to a priority-1
entry, a random priority-1 entry is chosen globally for eviction
from the data store, and its priority bit is reset to ‘0’, thus
downgrading it to a priority-0 entry. Maya also introduces
global eviction of priority-0 entries from the tag store, called
global random tag eviction. Such an eviction occurs every
time a new priority-0 entry is brought into the tag store and
a random priority-0 entry is invalidated from the tag store.
These two eviction policies ensure that the tag store has a fixed
number of invalid tag entries, which is crucial for security.

There can be a case where the tag store has not yet been
filled up with the appropriate number of priority-0 entries
(until all the reuse ways are filled). In such a case, when a new
priority-0 entry gets filled into the LLC, we do not perform

Invalid Priority-0

Priority-1
Dirty

Priority-1
Clean

Read Request

Read Request

Write
 Request

Random global

data eviction

Random global
data eviction

Random global
tag eviction

W
rite R

equest

Write Request

Fig. 3. State transition diagram for tag-store entries in Maya.

global random tag eviction. Similarly, if the data store is not
full and a priority-0 entry needs to be upgraded to a priority-1
entry, then we do not perform global random data eviction.
States in the tag store. With Maya, a tag entry can be in
one of three possible states: Invalid represents tag entries with
their valid bit set to ‘0’. Priority-0 entries are valid, but their
priority bit is set to ‘0’, i.e. they have tag only and no data.
Priority-1 entries are valid and with a priority set to ‘1’, i.e.
both tag and data are stored in the LLC. Dirty and clean denote
if the corresponding data entry has been modified or is up-to-
date with the main memory, respectively. Figure 3 shows all
possible transitions between these states.

A tag entry starts in the Invalid state when the LLC is
initialized. When a demand read comes in for an invalid tag,
it transitions to the priority-0 state, and a tag entry is assigned
to this tag. If a write request comes for an invalid tag, it is
automatically assigned both tag and data entries (priority-1)
and marked as dirty. Once a priority-0 entry gets accessed, it
is upgraded to a priority-1 entry, and its corresponding data is
brought into the cache. It is marked as dirty or clean based on
whether it was a write or a read request. When a clean priority-
1 entry gets a write request, it is marked as dirty since its
data is no longer up-to-date with the main memory. Priority-
1 entries can transition to the priority-0 state if selected for
random global data eviction, where a random priority-1 entry
is selected and downgraded to a priority-0 entry. Similarly, a
priority-0 entry can go to the invalid state if it gets chosen by
global random tag eviction.

C. Implementation

Our goal with the Maya cache design is to find the sweet
spot between performance, security, and storage overhead.
According to the security simulations in Section IV, we require
6 extra invalid tag entries per skew such that no set-associative
eviction occurs in the system lifetime. To compensate for the
storage overhead of the larger tag store, we reduce the size
of the data store to only 6 ways per skew (12 ways in total)
instead of the 16 ways per set for the baseline. This, along
with the 3 reuse ways per skew, leads to storage savings of
around 2% compared to the baseline. If we reduce the data
store size further, it will save more storage but also lead to
performance loss.

TABLE I
CACHE LINE INSTALLS PER SAE AS THE REUSE WAYS VARY FROM 1 TO 7

WAYS WITH FOR 5 AND 6 INVALID WAYS PER SKEW.

Reuse ways per skew 5 invalid ways per skew 6 invalid ways per skew

1-way 1018 (30 yrs) 2·1036 (1019 yrs)

3-ways 1016 (180 days) 4·1032 (1016 yrs)

5-ways 6·1015 (80 days) 7·1031 (1015 yrs)

7-ways 1015 (12 days) 2·1030 (1013 yrs)

Table I shows the security guarantees with different reuse
and invalid tag ways per skew. We observe a reduction in the
security guarantee as we increase the number of reuse ways
because security is affected by the associativity of the tag store
(as shown in Section IV). With six extra invalid ways and one
reuse way, we get the storage-efficient Maya that provides the
best security guarantee. However, with one reuse way, there
is a marginal performance overhead (Figure 4). Therefore, we
use Maya with three reuse ways per skew as it offers a sweet
spot between performance, security, and storage.
Figure 4 shows that when we move from one reuse way to
three reuse ways, it facilitates reuse prediction. Applications
like fotonik3d see a normalized performance improvement
from 0.97 to 1.04 when we move from one way to three ways.
For five and seven reuse ways, there is a slight increase in tag
lookup latency, which causes a minor performance drop. Note
that the ratio of number of ways for priority-0 to priority-1
entries for one, three, five, and seven reuse ways are 1

6 , 3
6 , 5

6 ,
and 7

6 , respectively. We do not change the data store entries
for the sensitivity study. This is because each data store entry
carries almost eight times the number of bits as compared to a
tag store entry, which leaves little room for changing the data
store size while keeping the storage same with different reuse
ways.

Each tag entry holds 40 tag bits for a 46-bit line address.
Three coherence bits for the MOESI coherence protocol and
one priority bit are also stored for each tag entry. To map to an
arbitrary data entry, an 18-bit FPTR is used. The SDID helps
keep track of the domain responsible for bringing in a cache
line to allow duplication of shared cache lines. This ensures
that the LLC fills of one domain do not affect the fills of
another. Maya uses an 8-bit SDID for supporting up to 256
domains. In total, we use a total of 70 bits for each tag entry.

The tag store in Maya is split up into two skews, each with
16K sets (same as a non-secure baseline). Each set consists
of six base ways per skew (total 12 ways, corresponding to
the number of priority-1 entries), three reuse ways per skew
(corresponding to the number of priority-0 entries), and an
additional six invalid ways per skew to help maintain system
security. With this, we get 192K (16K × 6 ways) priority-
1 entries, 96K (16K × 3 ways) priority-0 entries, and 192K
(16K×6 ways) invalid tag entries in the tag store, resulting in
480K total tag store entries. This, multiplied by the total tag
bits (70), leads to a tag store of size 4.1MB.

The data store has 192K entries, each storing 512 bits of
data (64B cache lines). A data store entry can map to any

0.98

0.99

1

1.01

One Three Five Seven

N
o

rm
al

iz
ed

Pe

rf
o

rm
an

ce

Number of reuse ways

Fig. 4. Effect of the number of reuse ways per skew on the performance of
Maya cache, normalized to the non-secure baseline LLC for SPEC CPU2017
homogeneous mixes.

arbitrary tag store entry, requiring a 19-bit RPTR. A total of
531 bits are stored for each data store entry, resulting in a total
data store size of 12.44MB.

For the randomizing function, we use a 12-round PRINCE
cipher [6], which is a 64-bit block cipher using 128-bit keys. It
is optimized for latency and has been used in previous works
such as [29], [36]. This adds latency of three cycles for every
LLC lookup. We also assume one additional cycle for tag and
data lookup because of the tag-to-data indirection. In total, the
Maya cache design requires four additional cycles per lookup.

IV. SECURITY ANALYSIS OF MAYA

Recent advances in eviction-based attacks show that only a
few SAEs are required to construct an eviction set and break
security. Mirage argued that if an LLC design ensures that no
SAEs occur in the system’s lifetime, it potentially mitigates
future attacks that could break the security of an LLC even
with a single SAE. To guarantee security even against such
strong attacks, we show that even a single SAE is highly
unlikely to occur in the system’s lifetime with Maya, and thus,
it guarantees security. We consider the worst-case scenario,
where every LLC access is a miss as it increases the chances
of getting SAEs. An LLC miss can be classified into three
categories: demand tag miss, demand or writeback tag hit with
priority-0 entry, and writeback tag miss. All these cases cause
a change in the tag store state, either by changing the number
of entries in a set or changing the composition of a set. Note
that a tag hit to priority-1 entry does not lead to any fills in
the tag store or data store. so we skipped it for the worst-
case scenario. Our security evaluation accommodates all these
categories of LLC miss.

A. Bucket-and-Balls Model

To estimate the probability of an SAE for the Maya cache,
we use a variation of the bucket-and-balls model as used in
[29]. The buckets represent cache sets, the balls denote tag
entries, and a ball throw represents a fill. With Maya tag
store, we can have two types of balls: priority-0 and priority-1.
Priority-0 balls represent tag entries with the priority bit set to
‘0’ (only tag and no data), whereas priority-1 balls represent
tag entries with the priority bit set to ‘1’ (both tag and data).
The buckets are initialized with a fixed number of priority-0
and priority-1 entries to model the Maya tag store design. This
ensures that we model the best-case scenario for the attacker.
Table II provides the parameters used for the bucket-and-balls

Bucket - 1 1

Ball throw

Global random tag eviction

Bucket - 2 1 1

1

1

1

10

00

0

Bucket - 1 1

Priority Upgrade

Bucket - 2 1 1

1

1

1

00

00

0

1

Priority Downgrade

1

Bucket - 1 1

Bucket - 2 1 1

1

1

1

00

00

0

1

1

Bucket - 3 1 1 00 1

1 Ball throw

0

10 1

Priority Downgrade

(a) Demand Tag miss

(b) Demand or Writeback Tag Hit

(c) Writeback Tag miss
Evicted

0

Fig. 5. Bucket-and-Balls model for the three types of LLC accesses: (a)
demand tag miss, (b) demand or writeback tag hit, and (c) writeback tag miss

model for a 12MB Maya cache. For the experiment, each
iteration consists of three types of LLC accesses that affect
the distribution of balls in the tag store.
Demand tag miss. On a demand tag miss, two buckets are
randomly chosen, one from each skew, and the ball is installed
into the bucket with fewer balls as a priority-0 ball. This
models the load-aware skew selection. In the case that both
buckets have the same number of balls, one of the two buckets
is randomly chosen. If both buckets are full, a bucket spill is
caused, and a priority-0 ball needs to be removed from one
of the two buckets. This represents a set-associative eviction,
which is unfavorable for security. Also, after this ball has
been inserted into a bucket, a random priority-0 ball must be
randomly evicted from any bucket in either skew. This enables
the global random tag eviction policy. Figure 5(a) shows the
different events that occur on a demand tag miss. Bucket-1 is a
randomly chosen bucket where the new priority-0 ball will be
inserted, and bucket-2 is another random bucket from which
a priority-0 ball will be removed.
Demand or writeback tag hit. To model a demand or write-
back tag hit to a priority-0 entry, we choose a random priority-
0 ball and upgrade it to a priority-1 ball, modeling a tag
hit. Simultaneously, we choose a random priority-1 ball and
downgrade it to a priority-0 ball (global random data eviction).
Figure 5(b) summarizes the events on a demand/writeback tag
hit with a priority-0 entry. Bucket-1 is a randomly chosen
bucket where a priority-0 ball will be upgraded to a priority-
1 ball, and bucket-2 is another random bucket from which a

TABLE II
PARAMETERS USED FOR THE BUCKET-AND-BALLS MODEL.

Bucket-and-Balls Model Maya Cache Design

Total priority-0 balls - 96K Total priority-0 entries - 96K

Total priority-1 balls - 192K Total priority-1 entries - 192K

Skews - 2 Skews - 2

Buckets/skew - 16K Sets/skew - 16K

Average priority-0 balls/bucket - 3 Average priority-0 entries/set - 3

Average priority-1 balls/bucket - 6 Average priority-1 entries/set - 6

Bucket capacity - 9 to 15 Ways per skew - 9 to 15

10 11 12 13 14 159
Bucket Capacity

101

103

105

107

Ite
ra

tio
ns

 P
er

 S
pi

ll

no spills observed

Fig. 6. Number of iterations required to cause a bucket spill. As the bucket
capacity increases from 9 to 13, the frequency of bucket spills reduces.

priority-1 ball will be downgraded to a priority-0 ball.
Writeback tag miss. For a writeback tag miss in the LLC,
we perform priority-1 ball throws using load-aware skew
selection. We then downgrade a random priority-1 ball to
a priority-0 ball, representing global random data eviction.
Since the total number of priority-0 balls has increased beyond
the steady-state value, we also perform global random tag
eviction. Figure 5(c) shows the events occurring for this type
of LLC access. Bucket-1 is a randomly chosen bucket where
the new priority-1 ball will be inserted, and bucket-2 is another
random bucket from which a priority-1 ball will be demoted to
a priority-0 ball. Furthermore, we randomly choose bucket-3
to evict a priority-0 ball.
Empirical results. Figure 6 shows the expected number of
iterations required to get a bucket spill with the given bucket
capacity. As we increase bucket capacity from 9 to 15, the
frequency of spills drastically reduces. We observe no spills for
bucket capacities 14 and 15, and it is impractical to compute
the spill frequency for these configurations in a reasonable
amount of time (an experiment with one trillion iterations
already takes a few days to simulate). We now demonstrate
an analytical model to estimate the probability of a spill for
14 and 15 ways/skew.

B. Analytical Model

Using bucket-and-ball simulations for one trillion iterations
(three trillion different accesses), we observe no bucket spills
for bucket capacities 14 and 15. We propose an analytical
approach based on the bucket-and-balls model to estimate

these cases’ spill frequency. To analytically calculate the
probability of a bucket spill, we create a model of our buckets-
and-balls system in a spill-free scenario, where the buckets
have unlimited capacity. The number of balls in a bucket is
modeled as a Birth-Death Markov chain [21], where the birth
event corresponds to a ball insertion and the death event to a
ball removal. Refer to Table III for the terminology used in
the model. A classic result for Birth-Death chains says that the
net conversion rate between any two states (here, state refers
to the number of balls in a bucket) becomes zero in the steady
state. Using this result, we obtain Equation 1, which equates
the transition probability from N to N+1 balls to the transition
probability from N+1 to N balls for a bucket.

Pr(N→N+1) = Pr(N+1→N) (1)

A bucket transitions from N to N+1 balls on a ball throw
in one of three cases: (i) both buckets randomly chosen from
skew-1 and skew-2 have N balls; (ii) the random bucket
chosen from skew-1 has N balls and the random bucket from
skew-2 has more than N balls; or (iii) the random bucket
chosen from skew-2 has N balls and the one from skew-1 has
more than N balls. The transition probability from N to N+1
balls is given by Equation 2.

Pr(N→N+1)=Pr(n=N)2+ 2×Pr(n=N)×Pr(n>N) (2)

For a bucket, the transition from N +1 balls to N balls
can occur only on a global random tag eviction wherein a
random priority-0 ball is globally selected for removal from
all the balls. The probability of choosing a ball in a bucket
with N + 1 balls is given by the following equation:

Pr(N+1→N)=
Btot×

∑r=N+1
r=1

(
r×Pr(n0=r, n1=N+1−r)

)
b0tot

Here, r represents the number of priority-0 balls in a bucket
with a total of N+1 balls. r varies from 1 to N+1 since
a bucket with no Priority-0 balls will never be selected for
Global random tag eviction.

Using Btot/b
0
tot = (1/3) (number of buckets/priority-0

balls) and splitting Pr(n0 = r, n1 = N + 1− r) into the
conditional probability, Pr(n0=r|n=N+1)×Pr(n=N+1),
we obtain the following equation:

Pr(N+1→N)=

r=N+1∑
r=1

(
r×Pr(n0=r|n=N+1)×Pr(n=N+1)

)
3

The expression
∑r=N+1

r=1

(
r×Pr(n0=r|n=N+1) simplifies

to Er[n0=r|n=N+1], which provides the Equation 3.

Pr(N+1→N)=

(
Er[n0=r|n=N+1]×Pr(n=N+1)

)
3

(3)

Since priority-0 balls constitute a (3/9) fraction of the total
balls in the LLC (refer Table II), Er[n0 = r|n = N +1] =
(3/9)(N+1), and Equation 3 simplifies to Equation 4.

Pr(N+1→N)=
(N+1)×Pr(n=N+1)

9
(4)

TABLE III
TERMINOLOGY USED IN THE ANALYTICAL MODEL.

Symbol Interpretation

Pr(X→Y)
Probability that a bucket with X balls
transitions to Y balls

Pr(n=N) Probability that a bucket contains N balls

Pr(n0=X,n1=Y)
Probability that a bucket contains X priority-0
balls and Y priority-1 balls

Pr(n0=X|n=Y)
Probability that a bucket contains X priority-0
balls and Y total balls

EX [n0=X|n= Y]
Expected number of priority-0 balls in a
bucket with Y total balls

Btot Total number of Buckets (32K)

b0tot Total number of priority-0 balls (96K)

0 2 4 6 8 10 12 14 16
Number of Balls (N) in a Bucket

100

10 5

10 10

10 15

10 20

10 25

10 30

10 35Pr
(B

uc
ke

t w
ith

 N
 b

al
ls)

Estimated
Experimental

Fig. 7. Probability of a bucket having N balls (Pr(n = N)) - experimental and
estimated using the analytical model.

Using the earlier results from Equation 1, 2, and 4, we get
a recursive relation for Pr(n=N) as given in Equations 5

Pr(n=N+1)=
9

N+1
×
(
Pr(n=N)2 + 2×Pr(n=N)×Pr(n>N)

)
(5)

As we increase n, Pr(n=N)→ 0 and therefore Pr(n >
N)≪Pr(n=N). Using this approximation, Equation 5 can
be simplified to Equation 6 for larger values of n (we use this
approximate equation once Pr(n=N) becomes smaller than
0.01).

Pr(n=N+1) =
9

N+1
×Pr(n=N)2 (6)

We simulate the bucket-and-ball model for one trillion
iterations and obtain the probability of a bucket with no balls
as Prexp(n=0)≈7.7×10−7. Using this value in Equation 5,
we recursively calculate Prest(n=N+1) for N ∈ [1, 12], and
then use Equation 6 for N ∈ [13, 15], when the probabilities
become less than 0.01. Figure 7 shows that the estimated
values closely match the experimental values. Using the above-
described analytical model, we obtain the spill probabilities for
14 and 15 ways.
Frequency of spills. Using the analytical model described
above, we calculated a probability estimate for N = 14, 15.
If we consider a cache design with W ways per skew, the
probability of an SAE (or a bucket spill) will be given by
Pr(n = W + 1). The spill probability follows a double-
exponential reduction, as seen in Figure 7. For W =13, 14, 15,

TABLE IV
CACHE LINE INSTALLS PER SAE AS THE BASE ASSOCIATIVITY OF THE

TAG-STORE VARIES FROM 8 WAYS TO 36 WAYS. 18-WAYS (6+3): ON
AVERAGE, IT CONSISTS OF 6 BASE AND 3 REUSE WAYS/SKEW.

Associativity

Invalid Ways 8-ways (3+1) 18-ways (6+3) 36-ways (12+6)

4 extra ways/skew 1010 (7 s) 108 (0.1 s) 107 (9 ms)

5 extra ways/skew 1020 (103 yrs) 1016 (180 days) 1014 (1 day)

6 extra ways/skew 1040 (1023 yrs) 1032 (1016 yrs) 1028 (1011 yrs)

an SAE occurs every 108, 1016, and 1032 line installs, respec-
tively. Thus, the Maya cache design with 15 ways per skew
has a frequency of one SAE in 4 ·1032 line installs or once
in around 1016 years, effectively providing complete security
against eviction-based attacks.
Key management. The key used in Maya is set during
the system boot. Although the probability of an SAE is
significantly low, in the event of an SAE, the key used in
the cipher for mapping is refreshed followed by a cache flush.
Sensitivity to associativity. We now vary the associativity
of the Maya tag store, keeping the data store size at 12MB.
The base associativity varies from 8 to 36 ways, with the
default configuration having 18 total ways (6 base and 3
reuse ways per skew). Table IV shows the rate of SAE for
these configurations. We can observe that for the same extra
invalid ways per skew, the 8-way configuration is the most
secure (one SAE in 1023 years), and security reduces as the
base associativity increases. However, even for the 36-way
configuration, the rate of SAE is once in 1010 years, which is
beyond the system lifetime.

C. Need for Domain IDs

In situations where attacker and victim do share cache lines,
various attacks like Flush+Reload [38], Flush+Flush [16],
Flush+Prefetch [15], and Evict+Reload [17], could potentially
leak victim data. Mirage stores the Security-Domain-ID
(SDID), which is 8 bits, denoting the domain installing the
line along with the tag of the line in the tag store. This
guarantees the duplication of shared lines. Similarly, Maya
includes an 8-bit SDID for each tag entry, accommodating a
maximum of 256 domains. This ensures that the LLC fills
of one domain do not affect the fills of another domain, and
thus, the system is secure against shared-memory attacks. The
length of the SDID can be adjusted to support more or fewer
domains, depending on the requirement. Maya also mitigates
Reload+Refresh [9] attack as it guarantees global evictions
with random replacement.
Maya and the private caches. In the case of a private L1
or L2 cache, which is mostly shared by a 2-way simultaneous
multi-threading (SMT) processor, it is relativity an easy design
choice to partition the private L1 or L2 among two threads
as done in the prior works [10]. Usage of randomization,
global random replacement, and additional reuse ways at L1
can lead to performance degradation as high as more than 10%.

0.6

0.7

0.8

0.9

1

AES Mod. ExpN
o

rm
al

iz
ed

 n
u

m
b

e
r

o
f

en
cr

yp
ti

o
n

s

16-way associative MAYA Fully associative

Fig. 8. LLC occupancy attack: number of encryptions required to break AES
and modular exponentiation with a 16-way associative cache, Maya cache,
and a fully associative cache. The number of encryptions is normalized to a
fully associative cache with a random replacement policy.

Similarly, the cache coherence directory can be partitioned
[37]. So overall, the cache hierarchy will have heterogeneous
solutions for security.

D. The cat and mouse game

Sophisticated attacker. One can argue that the timing dif-
ference between accessing a priority-1 entry and a priority-
0/invalid tag entry can be exploited to mount a new timing-
based side-channel attack. However, in the Maya cache design,
the entries owned by the victim and the attacker have different
SDIDs and are filled in isolation. The only way the attacker
can exploit the reuse-based fills is by mounting an eviction-
based attack, which we have already shown to be impossible
since there are no set-associative evictions for 1016 years.
Cache occupancy attack and Maya. The Maya cache, by
design, does not mitigate cache occupancy attacks and even
a fully associative cache is prone to cache occupancy attacks.
However, the Maya cache, while mitigating conflict-based at-
tacks, should not make it easier to mount an occupancy-based
attack. To evaluate the same, we mount an LLC occupancy-
based attack. We attack AES (OpenSSL implementation with
T tables) and modular exponentiation and compare the number
of encryptions required to break the keys using cacheFX [13].
To make it a strong attack, we simulate AES and modular
exponentiation with two different keys, each having different
reuse profiles at the LLC so that an attacker can exploit the
Maya cache. The goal of the attacker is to distinguish these
keys based on the reuse profiles. We run the attack 1,000,000
times and report the median of number of encryptions required
for distinguishing the keys.

Normalized to a fully associative cache that uses a random
replacement policy, the Maya cache behaves almost similarly
(not the same) to a fully associative cache, with normalized
values of 0.996 and 0.992 for AES and modular exponenti-
ation, respectively (Figure 8). Note that we normalize the
number of encryptions to the number of encryptions required
for a fully associative cache (10590 for AES and 94 for
modular exponentiation). As expected, a 16-way associative
cache makes it easier to mount an attack, with normalized
encryptions of 0.85 (15% easier) and 0.63 (37% easier) for
AES and modular exponentiation, respectively.

TABLE V
SIMULATION PARAMETERS OF THE BASELINE SYSTEM.

Core 8 cores, Out-of-order, bimodal [33], 4 GHz with 6-issue
width, 4-retire width, 512-entry ROB

TLBs L1 ITLB/DTLB: 64 entries, 4-way, 1 cycle, STLB: 2048
entries, 16-way, 8 cycles

L1I 32 KB, 8-way, 1 cycle, LRU

L1D 48 KB, 12-way, 5 cycles, LRU, IPCP prefetcher [23]

L2 512 KB 8-way associative, 10 cycles, LRU, non-inclusive

LLC 2 MB/core, 16-way, 24 cycles, Hawkeye [18], non-inclusive

MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC

DRAM controller DDR4-3200, two channels/8-cores 4 KB row-buffer per
bank, open page, burst length 16, tRP, RCD, CAS: 12.5 ns

V. PERFORMANCE ANALYSIS

A. Methodology

We use the ChampSim [3] micro-architecture simulator to
evaluate different cache designs. We use a non-secure 8-core
16MB, 16-way set-associative last-level cache with 64-byte
cache lines as the baseline. Table V provides the simulated
parameters of the baseline non-secure system configuration.
We evaluate 42 homogeneous workloads created from 42
different sim-points from the SPEC CPU2017 benchmark suite
[2] and 20 homogeneous workloads from 20 different sim-
points from the GAP benchmark suite [4], with more than
one LLC miss per kilo instruction (MPKI) for the baseline
configuration. Note that we select benchmarks based on their
LLC MPKI for a single core 2MB LLC. We also use a set of
21 heterogeneous mixes with randomly chosen benchmarks
from the SPEC CPU2017 and GAP suites. Table VI shows
the heterogeneous mixes representing the behavior of more
than 1000 heterogeneous mixes. Table VII shows the average
LLC MPKI for a 16MB LLC with eight cores of SPEC
CPU2017 and GAP homogeneous mixes and heterogeneous
mixes, respectively. Note that with Maya, there are tag-only
misses at the LLC on top of tag+data misses.

We simulate 1.6B instructions for eight cores (200M in-
structions per core in the region of interest after a warmup of
200M instructions per core). We use the weighted speedup [34]
performance metric to compare the performance of different
cache designs for an 8-core multi-core system. We compare
the performance of the Maya cache design with a non-secure
baseline and the Mirage cache design. We also perform a
sensitivity study on the LLC size per core and later analyze
the performance of Maya for higher-core systems.

B. Performance

Homogeneous mixes. Figure 9 shows the performance for
Maya and Mirage normalized to the baseline for various ho-
mogeneous SPEC and GAP workloads. For the SPEC bench-
marks, on average, Maya outperforms Mirage marginally, with
a marginal performance improvement over the baseline. For
benchmarks such as mcf, wrf, fotonik3d, we observe
a substantial increase in performance for Maya despite the
higher LLC latency. We observe that for these benchmarks,
Maya reduces the inter-core interference in the data store by
more than 70% compared to the baseline due to the notion of

TABLE VI
HETEROGENEOUS MIXES AS PER TABLE VII.

Mix Composition Bin

M1 cactuBSSN(2)-wrf(1)-xalancbmk(1)-pop2(1)-roms(1)-xz(1)-sssp(1) L

M2 bwaves(1)-mcf(1)-cactuBSSN(1)-wrf(1)-xalancbmk(1)-xz(1)-bfs(1)-
sssp(1) L

M3 mcf(1)-cactuBSSN(1)-omnetpp(1)-xalancbmk(1)-roms(1)-bfs(1)-
cc(1)-sssp(1) L

M4 perlbench(1)-bwaves(1)-mcf(3)-cam4(1)-xz(1)-bc(1) L

M5 perlbench(1)-mcf(2)-cactuBSSN(1)-roms(1)-xz(1)-bc(1)-pr(1) L

M6 gcc(1)-mcf(2)-cactuBSSN(1)-lbm(2)-fotonik3d(1)-roms(1) L

M7 bwaves(1)-mcf(1)-cactuBSSN(1)-pop2(1)-xz(1)-bc(2)-sssp(1) L

M8 gcc(2)-bwaves(1)-x264(1)-bc(1)-cc(1)-pr(1)-sssp(1) M

M9 gcc(1)-cactuBSSN(1)-lbm(1)-xalancbmk(1)-x264(1)-cam4(1)-pr(1)-
sssp(1) M

M10 mcf(3)-lbm(1)-wrf(1)-fotonik3d(2)-sssp(1) M

M11 mcf(3)-lbm(1)-omnetpp(1)-pop2(1)-roms(1)-cc(1) M

M12 mcf(2)-cactuBSSN(1)-fotonik3d(1)-roms(2)-cc(1)-pr(1) M

M13 bwaves(1)-mcf(1)-xalancbmk(1)-fotonik3d(1)-roms(2)-bc(1)-sssp(1) M

M14 mcf(1)-lbm(1)-xalancbmk(1)-roms(1)-bc(1)-cc(1)-sssp(2) M

M15 bwaves(1)-cactuBSSN(1)-lbm(1)-roms(2)-bfs(1)-pr(1)-sssp(1) H

M16 mcf(3)-cactuBSSN(1)-lbm(1)-bfs(2)-cc(1) H

M17 mcf(1)-cactuBSSN(1)-wrf(1)-xalancbmk(1)-x264(1)-bc(1)-pr(2) H

M18 omnetpp(1)-wrf(1)-fotonik3d(1)-roms(1)-bc(2)-cc(1)-sssp(1) H

M19 bwaves(1)-mcf(2)-cactuBSSN(1)-xalancbmk(1)-bfs(1)-pr(1)-sssp(1) H

M20 perlbench(1)-mcf(2)-omnetpp(1)-fotonik3d(1)-pr(1)-sssp(2) H

M21 gcc(1)-bwaves(1)-mcf(2)-lbm(1)-bc(1)-pr(2) H

TABLE VII
AVERAGE LLC MPKIS.

Workloads Baseline Mirage Maya

SPEC and GAP-RATE 13.9 12.5 12.5

HETERO
LOW 8.01 8.05 8.53

MEDIUM 14.72 14.73 15.31
HIGH 21.51 21.48 21.04

storing only “useful” entries in the data store. This compen-
sates for the higher access latency and results in a performance
gain for Maya. For benchmarks such as lbm, cactuBSSN,
and cam4, Maya incurs a performance slowdown compared to
the baseline. The cam4 and cactusBSSN workloads have a
relatively low dead block percentage in the LLC and low inter-
core interference, even for the baseline. Therefore, it benefits
from the larger data store of the baseline and Mirage, and
we observe a performance slowdown of with Maya. For lbm,
which is a streaming workload with almost zero load hit rate in
the LLC, Mirage incurs a slowdown of around 8% compared
to the baseline because of the extra 4-cycle access latency.

On average, Maya performs 5% better than the baseline for
GAP workloads. The average improvement is influenced by
50% performance improvement with pr. For the pr workload,
Mirage and Maya deliver 57% and 50% better performance
than the baseline, respectively. This trend is contributed by a
weak baseline for pr, where the IPCP prefetcher impacts the
baseline performance as it behaves worse than no prefetching
and LRU policy. The bc, cc and sssp workloads incur a
high performance slowdown compared to the baseline due to

0.9

0.95

1

1.05

1.1

1.15

N
o

rm
al

iz
ed

Pe

rf
o

rm
an

ce MIRAGE MAYA

1.57 1.50

Fig. 9. Performance of Maya for 8-core homogeneous mixes.

0.94

0.96

0.98

1

1.02

1.04

1.06

Low Medium High Geomean

N
o

rm
al

iz
ed

Pe

rf
o

rm
an

ce

MIRAGE MAYA

Fig. 10. Performance of Maya for 8-core heterogeneous mixes.

an increase in the inter-core interference in the data store.
Heterogeneous mixes. For the heterogeneous workloads
(shown in Figure 10), Maya shows a 1.5% average perfor-
mance improvement compared to the baseline, whereas Mirage
incurs a marginal performance slowdown. Maya shows an
improvement of more than 4% in performance for low-MPKI
mixes because of the reduction in inter-core interference.
Whereas medium-MPKI and high-MPKI mixes get a marginal
performance slowdown because of their large working sets. In
general, Maya helps improve performance for workloads with
high inter-core interference and a high dead block percentage
in the LLC. Note that in many mixes, Maya increases the miss
rate at the LLC as it does not fill the cache line into the LLC
on its first miss, providing tag-only hits. However, overall, it
improves the performance as the useful entries are retained.
Performance of LLC fitting benchmarks. As Maya reduces
the data store sizes, benchmarks that fit into the LLC may
result in performance slowdowns. We simulate LLC fitting
benchmarks from SPEC CPU2017 (LLC MPKI less than 0.5)
and observe an average performance loss of 0.63% compared
to a non-secure baseline.
Impact of random global tag eviction on performance.
Random global tag evictions enhance the security provided by
Maya. However, it can impact performance when a priority-0
entry that is yet to get reused (to be promoted to priority-1)
gets invalidated by random global tag eviction. We quantify
this event across all homogeneous mixes, and on average, less
than 0.022% of the random global tag evictions to priority-0
entries would have gotten reused if we had used a non-random
(SRRIP [19]) policy.
Sensitivity to LLC size. For the Maya cache, we used an
LLC data store size of 12MB (1.5MB per core). We now
evaluate the performance of Maya with 6MB to 96MB data

TABLE VIII
STORAGE OVERHEADS.

Configurations Baseline Mirage Maya

Tag
Entry

Tag Bits 26 40 40
Coherence 3 3 3

Priority - - 1
FPTR - 18 18
SDID - 8 8

Total bits 29 69 70

Tag Entries 262144 458752 491520
Tag Store Size 928 KB 3864 KB 4200 KB

Data
Entry

Data Bits 512 512 512
RPTR - 19 19

Total Bits 512 531 531

Data Entries 262144 262144 196608
Data Store Size 16384 KB 16992 KB 12744 KB

Total Storage 17312 KB 20856 KB (+20%) 16994 KB (-2%)

stores (baseline LLC size varying from 8MB to 128MB). Note
that we also scale the tag store proportionately to the data
store. We observe that the 6MB Maya configuration shows the
best performance compared to its counterpart baseline config-
uration. Performance decreases marginally as we increase the
LLC size beyond 24MB as a large fraction of the working set
starts getting LLC hits.
Sensitivity to number of cores. Compared to an 8-core
system, with 16 and 32-core systems, we observe marginal
performance improvements over their respective baselines.
We observe that the performance degradation for 32 cores
compared to 16 cores is smaller than that of 16 cores compared
to 8 cores, which signifies that the performance loss saturates
as the number of cores increases. This shows that the Maya
cache design can be extended to many-core systems.

VI. STORAGE, AREA, AND POWER OVERHEADS

Storage. A self-contained Table VIII shows the storage re-
quirements of Maya, Mirage, and the baseline.
Power consumption and energy. To estimate the static power
and the dynamic access energy, along with the area required,
we use the 7nm FinFET technology simulated using P-CACTI
[1]. Table IX summarizes the observed dynamic energy and
static power results for all three cache designs. We observe
a reduction of 15.55% in dynamic read energy and 11.40%
in dynamic write energy for the Maya cache compared to the

TABLE IX
ENERGY, POWER, AND AREA OVERHEADS. MAYA ISO AREA IS MAYA

WITH A SIMILAR AREA (16.085 mm2) AS MIRAGE.

Design Read Energy
/ Access (nJ)

Write Energy
/ Access (nJ)

Static
Power (mW)

Area
(mm2)

Baseline 3.153 4.652 622 14.868

Mirage 3.274 4.857 735 15.887

Maya 2.661 4.116 588 10.686

Maya ISO 3.276 4.862 760 16.085

TABLE X
STORAGE AND PERFORMANCE OVERHEADS. PERFORMANCE IS

EVALUATED ON SPEC CPU2017 HOMOGENEOUS MIXES.

Cache Design Security (Installs per SAE) Storage Performance

Maya 1032 (1016 yrs) −2% +0.20%

Mirage 1034 (1017 yrs) +20% −0.55%

Mirage-Lite 1021 (22, 000 yrs) +17% −0.55%

Maya ISO 1030 (1014 yrs) +26% +1.84%

baseline. On the other hand, Mirage shows a 3.81% increase
in dynamic read energy and 4.52% increase in dynamic write
energy compared to the baseline. We observe that the dynamic
read/write energy is largely dominated by the energy required
by the data store. Since Maya uses a smaller data store, we
observe savings in dynamic energy for both reads and writes.
Regarding the static power, Maya incurs 5.46% less power
compared to the baseline. In contrast, Mirage incurs a power
overhead of 18.16%, owing to the larger tag store and same-
sized data store compared to the baseline.
Area. The data store largely takes up the area of the LLC.
Because of this, the small data store design of the Maya cache
can show savings of over 28.11% compared to the baseline,
as seen in Table IX, whereas Mirage suffers a 6.86% area
overhead due to the larger tag store. Note that Maya with
ISO area budget consumes more static power as the ISO area
implementation incurs a slight increase in area.
Summary. Table X shows a comparison of the Maya, Mirage,
Mirage-Lite, and Maya ISO area. The Maya cache design
provides an optimal balance between security, storage, and per-
formance. Maya ISO area incurs a storage overhead of 26%,
static power overhead of 22.1%, and improves performance by
1.84%, whereas Maya provides a performance improvement of
0.20% with a storage savings of 2% and static power savings
of 5.46%. One can argue that the storage overhead of Mirage
can be mitigated by removing the decoupled nature of the data
store and extra FPTR/RPTR bits and ensuring that the total
number of valid entries is below a particular threshold in the
cache to ensure security. On a miss, the line can be installed
into the set with fewer valid entries (load-aware selection),
and random global evictions are enabled once the total valid
entries in the cache reach a threshold. Using our bucket-and-
balls model for 16MB LLC with 75% maximum cache entries
(equivalent to a 12MB LLC), we observe that this method
leads to an SAE after less than 109 cache installs (<1s) due

TABLE XI
PERFORMANCE AND STORAGE OVERHEADS WITH SECURE PARTITIONING

TECHNIQUES FOR AN 8-CORE SYSTEM WITH 16MB LLC.

Technique Performance Storage

Page coloring [8] −19% +0.5%

DAWG [20] −16% +0.5%

BCE [11] −9% +2%

to only four extra invalid ways per skew.
Comparison with secure LLC partitioning techniques.
Dynamically Allocated Way Guard (DAWG) [20] at the LLC
uses a software configurable mask to decide way allocations
among multiple security domains running on a multi-core
system. One of the limitations of DAWG is the upper limit on
the isolated domains that are bounded by the number of LLC
ways. Maya does not have this limitation. Page Coloring [8]
at the LLC creates isolated regions at the LLC set level. LLC
partitioning via page coloring creates different DRAM regions
and uses DRAM region bits with LLC index bits to access
LLC. One of the limitations of the page coloring technique is
that it cannot manage LLC and DRAM spaces independently.
Bespoke Cache Enclave (BCE) [28] makes a case for flexible
cache partitioning that provides isolation by creating partitions
as small as 64KBs. One of the key benefits of BCE is that the
number of partitions is not restricted by the number of LLC
ways, and LLC space allocation is independent of DRAM
space allocation, making it a scalable technique compared
with DAWG and page coloring. Note that LLC partitioning
techniques can mitigate both conflict and occupancy-based at-
tacks. However, these techniques incur significant performance
overheads. Table XI shows performance and storage overheads
with three state-of-the-art secure LLC partitioning techniques
for SPEC CPU2017 homogeneous mixes.

VII. CONCLUSION

We presented Maya, a randomized fully associative last-
level cache that uses additional tag entries and fewer data
entries. Overall, Maya guarantees that it will take 1016 years
for one set associative eviction to initiate a conflict-based
attack, which is more than the system’s lifetime. Maya is
energy-efficient (5.46% less static power) and area-efficient
(28.11% savings) thanks to a smaller data store. Maya provides
a strong security guarantee with storage savings (and not over-
head) compared to a non-secure baseline cache. Overall, Maya
provides the sweet spot in terms of security, performance, area,
and energy overhead.

VIII. ACKNOWLEDGEMENTS

We would like to thank Pratik for the initial implementation
of the PRINCE cipher and randomized caches. We would
also like to thank members of the CASPER research group,
Gururaj, Moin, and Sayandeep for their feedback on the initial
draft. This work is supported by the Trust Lab Research Grant
2023.

APPENDIX

A. Abstract

This artifact contains all the information necessary to repro-
duce the main results in the paper in Figures 1, 6, 7, and 9.
We describe how the required software and the elements that
compose it can be obtained, and how to run the artifact.

B. Artifact check-list (meta-information)

• Program: ChampSim
• Compilation: GNU GCC 7.5.0
• Data set: SPEC CPU2017 traces from 3rd Data

Prefetching Championship (https://dpc3.compas.cs.
stonybrook.edu/champsim-traces/speccpu/), GAP traces (https:
//utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/
folder/132804598561)

• Run-time environment: an Intel x86 64 processor
• Hardware: tested on an Intel Xeon Gold 5220R
• Metrics: Weighted Speedup
• Output: four PDF files with graphs
• How much disk space required (approximately)?: 35 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 30 minutes
• How much time is needed to complete experiments (approx-

imately)?: 5-6 days
• Publicly available?: yes
• Archived (provide DOI)?: 10.5281/zenodo.11070624

C. Description

1) How to access: The software can be obtained from
GitHub: https://github.com/AnubhavBhatla/maya-cache
Use the following command to clone the repository:
$ git clone
https://github.com/AnubhavBhatla/maya-cache

2) Software dependencies: We test the artifact on a system
with these features:

• Ubuntu 20.04.4 LTS
• Linux Kernel 5.15.0
• Python 3.8.10
• Bash 5.0.17
• GCC 7.5.0
• Python3 Packages

– matplotlib 3.7.3
– numpy 1.24.4
– pandas 2.0.3
– scipy 1.10.1

The Python3 packages can be downloaded using the command:
$ pip install -r requirements.txt

3) Data sets: For this artifact, the SPEC CPU2017
traces from the 3rd Data Prefetching Championship (https:
//dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/)
and the GAP traces (https://utexas.app.box.com/s/
2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561)
are needed. These SPEC traces are automatically downloaded
by the artifact but the GAP traces will have to be manually
downloaded.

D. Installation & Experiment workflow
The overall flow for running the artifact is as follows:

1) Clone the repository:
$ git clone

https://github.com/AnubhavBhatla/maya-cache
2) Enter the performance-analysis directory:

$ cd maya-cache/performance-analysis
3) Download the required traces:

The zip file for the required GAP traces can
be downloaded from https://utexas.app.box.com/
s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/
132804598561. Download it to the traces directory.
To download the required SPEC CPU2017 traces, run
the command: $./traces.sh This also extracts
the GAP traces in the correct directory.

4) Generate the required binaries:
$./compile.sh

5) Run the performance simulations:
$./run.sh
This step will take a large amount of time to complete
(5-6 days).

6) Generate the performance plots:
Once all the performance simulations have been com-
pleted, the plots can be generated using
$./plot.sh 0
We have also provided our simulation results which can
be used to generate the plots using:
$./plot.sh 1

7) Enter the security-analysis directory:
$ cd ../security-analysis

8) Generate the required binaries:
$ make

9) Run the security simulations:
$./run.sh

10) Generate the security plots:
Once all the security simulations have been completed,
the plots can be generated using
$ python3 plot.py

E. Evaluation and expected results
In the performance-analysis directory, two graphs

are generated, namely, fig1.pdf and fig9.pdf. In the
security-analysis directory, two graphs are generated,
namely, fig6.pdf and fig7.pdf.

REFERENCES

[1] Pcacti tool, Online. Available: https://sportlab.usc.edu/downloads/.
[2] “SPEC CPU 2017 traces for champsim,” https://hpca23.cse.tamu.edu/

champsim-traces/speccpu/index.html, Feb. 2019.
[3] “ChampSim simulator,” http://github.com/ChampSim/ChampSim, May

2020.
[4] “GAP traces for champsim,” https://utexas.app.box.com/s/

2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561, Mar.
2021.

[5] J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llaberı́a, “The reuse cache:
Downsizing the shared last-level cache,” in 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2013, pp. 310–
321.

https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://github.com/AnubhavBhatla/maya-cache
https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://sportlab.usc.edu/downloads/
https://hpca23.cse.tamu.edu/champsim-traces/speccpu/index.html
https://hpca23.cse.tamu.edu/champsim-traces/speccpu/index.html
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561

[6] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic,
L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger,
P. Rombouts, S. S. Thomsen, and T. Yalçin, “PRINCE - A low-latency
block cipher for pervasive computing applications (full version),”
IACR Cryptol. ePrint Arch., p. 529, 2012. [Online]. Available:
http://eprint.iacr.org/2012/529

[7] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan, “Casa:
End-to-end quantitative security analysis of randomly mapped caches,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2020, pp. 1110–1123.

[8] T. Bourgeat, I. A. Lebedev, A. Wright, S. Zhang, Arvind, and
S. Devadas, “MI6: secure enclaves in a speculative out-of-order
processor,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2019, Columbus, OH, USA,
October 12-16, 2019. ACM, 2019, pp. 42–56. [Online]. Available:
https://doi.org/10.1145/3352460.3358310

[9] S. Briongos, P. Malagon, J. M. Moya, and T. Eisenbarth,
“RELOAD+REFRESH: Abusing cache replacement policies to perform
stealthy cache attacks,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
1967–1984. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/briongos

[10] D. et al., “Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks,” vol. 8, no. 4, jan 2012. [Online]. Available:
https://doi.org/10.1145/2086696.2086714

[11] S. et al., “Bespoke cache enclaves: Fine-grained and scalable isolation
from cache side-channels via flexible set-partitioning,” in 2021 Interna-
tional Symposium on Secure and Private Execution Environment Design
(SEED). IEEE, 2021, pp. 37–49.

[12] W. et al., “Randomized last-level caches are still vulnerable to cache
side-channel attacks! but we can fix it,” in Proceedings - 2021 IEEE
Symposium on Security and Privacy, SP 2021, ser. Proceedings - IEEE
Symposium on Security and Privacy. United States: Institute of
Electrical and Electronics Engineers Inc., May 2021, pp. 955–969.

[13] D. Genkin, W. Kosasih, F. Liu, A. Trikalinou, T. Unterluggauer, and
Y. Yarom, “Cachefx: A framework for evaluating cache security,” in
Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 163–176. [Online].
Available: https://doi.org/10.1145/3579856.3595794

[14] L. Giner, S. Steinegger, A. Purnal, M. Eichlseder, T. Unterluggauer,
S. Mangard, and D. Gruss, “Scatter and split securely: Defeating
cache contention and occupancy attacks,” in 44th IEEE Symposium
on Security and Privacy, SP 2023, San Francisco, CA, USA, May
21-25, 2023. IEEE, 2023, pp. 2273–2287. [Online]. Available:
https://doi.org/10.1109/SP46215.2023.10179440

[15] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016.

[16] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A
fast and stealthy cache attack,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2016.

[17] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive Last-Level caches,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015.

[18] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp.
78–89.

[19] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer, “High performance
cache replacement using re-reference interval prediction (rrip),” in 37th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2010, pp. 60–71.

[20] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018, pp. 974–987.

[21] D. J. Lilja, Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press, 2000.

[22] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 605–622.

[23] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: In-
struction pointer classifier-based spatial hardware prefetching,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), 2020, pp. 118–131.

[24] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic analysis
of randomization-based protected cache architectures,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 987–1002.

[25] M. Qureshi, D. Thompson, and Y. Patt, “The v-way cache: demand-
based associativity via global replacement,” in 32nd International Sym-
posium on Computer Architecture (ISCA’05), 2005, pp. 544–555.

[26] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 775–787.

[27] M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 360–371. [Online]. Available:
https://doi.org/10.1145/3307650.3322246

[28] G. Saileshwar, S. Kariyappa, and M. Qureshi, “Bespoke cache enclaves:
Fine-grained and scalable isolation from cache side-channels via flex-
ible set-partitioning,” in 2021 International Symposium on Secure and
Private Execution Environment Design (SEED), 2021, pp. 37–49.

[29] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating conflict-based
cache attacks with a practical fully-associative design,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021.

[30] A. Seznec, “A case for two-way skewed-associative caches,” in 20st Int’l
Symp. on Computer Architecture (ISCA), May 1993, pp. 169–178.

[31] I. Shah, A. Jain, and C. Lin, “Effective mimicry of belady’s min policy,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 558–572.

[32] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren,
and Y. Yarom, “Robust website fingerprinting through the cache
occupancy channel,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 639–656. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/shusterman

[33] J. E. Smith, “A study of branch prediction strategies,” in Proceedings
of the 8th annual symposium on Computer Architecture, 1981, pp. 135–
148.

[34] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a
simultaneous multithreaded processor,” SIGOPS Oper. Syst. Rev.,
vol. 34, no. 5, p. 234–244, nov 2000. [Online]. Available:
https://doi.org/10.1145/384264.379244

[35] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized
last-level caches are still vulnerable to cache side-channel attacks! but
we can fix it,” in Proceedings - 2021 IEEE Symposium on Security and
Privacy, SP 2021, 2021.

[36] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss,
and S. Mangard, “ScatterCache: Thwarting cache attacks via cache
set randomization,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 675–692. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/werner

[37] M. Yan, J.-Y. Wen, C. W. Fletcher, and J. Torrellas, “Secdir: a secure
directory to defeat directory side-channel attacks,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
332–345. [Online]. Available: https://doi.org/10.1145/3307650.3326635

[38] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
L3 cache side-channel attack,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, 2014.

http://eprint.iacr.org/2012/529
https://doi.org/10.1145/3352460.3358310
https://www.usenix.org/conference/usenixsecurity20/presentation/briongos
https://www.usenix.org/conference/usenixsecurity20/presentation/briongos
https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1145/3579856.3595794
https://doi.org/10.1109/SP46215.2023.10179440
https://doi.org/10.1145/3307650.3322246
https://www.usenix.org/conference/usenixsecurity19/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity19/presentation/shusterman
https://doi.org/10.1145/384264.379244
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1145/3307650.3326635

