Analysis of Adaptive LLC Caches in GPUs

Summer Project Report

Submitted in fulfillment of the requirements

for the Summer Project

by
Anubhav Bhatla
(Roll No. 200070008)

Under the guidance of
Prof. Virendra Singh

Department of Electrical Engineering
Indian Institute of Technology Bombay
August 2022

Acknowledgement

I express my gratitude to my guide Prof. Virendra Singh for providing me the opportu-
nity to work on this topic.

Anubhav Bhatla
Electrical Engineering
ITT Bombay

Abstract

Graphics Processing Units (GPUs) are widely used to accelerate a wide range of emerging
throughput-oriented applications, e.g., machine learning and data analytics. To match
the rising computational demands in these fast-growing fields, the number of SMs and
the available memory bandwidth have both been steadily increasing with successive gen-
erations.

Most GPUs feature a two-level on-chip cache hierarchy in which the first-level caches
are private to eac SM while the last-level cache (LLC) is a shared memory-side cache,
partitioned in equally-sized slices that are shared by all SMs. This leads to a lower
miss rate, but for a sharing-intensive application a private LLC leads to a significant
performance advantage because of increased bandwidth to replicated cache lines across
different LLC slices.

In this report, I shall anaylyse adaptive memory-side last-level GPU caching proposed
by Zhao et al. to boost performance for sharing-intensive workloads by finding a balance
between increased LLC bandwidth and increased miss rate under private caching.

Contents

List of Figures 2
1 Introduction 4
1.1 GPU Architecture 4

1.2 Shared vs Private LLC, 4

2 Literature Survey 6
2.1 Decoupled L1 Caches 6

3 Proposed Idea 7
3.1 NoC-Enabled Adaptive LLC 7
3.1.1 Coherence Implications 7

3.1.2 Dynamic Reconfiguration 7

3.1.3 Dynamic Profiling 0L 7

3.1.4 Multi-Program Support L 8

3.2 Reconfigurable H-Xbar Support 8
3.3 Reconfiguration Rules oL 8
3.4 Model for Miss Rate and Bandwidth 9

4 Conclusion 10
4.1 Workdonesofar 10
4.2 Futureplans 10
4.3 Endgoal 10

List of Figures

1.1 Shared and Private memory-side LLC organization in GPUs
1.2 Normalized performance for a shared versus private LLC

3.1 Multiprogram Supporto
3.2 MC-router architecture in the reconfigurable H-Xbar

Chapter 1

Introduction

1.1 GPU Architecture

The graphics processing unit, or GPU, has become one of the most important types of
computing technology, widely used in throughput-oriented applications, e.g. machine
learning and data analysis. Due to such high computation demand, GPUs are built with
an increasingly large number of streaming multiprocessors (SMs).

Each of these SMs accomodate a level-1 instruction cache with its associated cores.
Typically, one SM uses a dedicated L1 cache and a shared L2 cache, partitioned into
equally-sliced slices and accessed via the Network-on-Chip (NoC). While countless re-
search efforts have optimized the cache hierarchy for multicore CPUs, there is a fun-
damental difference between optimizing the cache hierarchy for a GPU versus a CPU.
Unlike latency-sensitive CPUs, GPUs desire high bandwidth access to application data.
The traditional CPU solution of designing a banked, large shared LLC can create band-
width bottlenecks for a GPU. This is especially the case when multiple SMs concurrently
access shared data in the shared LLC.

Typically, GPU workloads have large read-only data footprints which leads to a severe
performance bottleneck if multiple SMs concurrently access the same shared data. A
potential solution to this bandwidth problem is to use a private LLC, i.e. replicating
shared data across different LLC slices. But this leads to higher cache misses because of
cache line replication.

1.2 Shared vs Private LLC

In the shared LLC organization, an LLC slice is shared by all the SMs, see Figure 1.2.
The LLC slice for a given cache is determined by a few address bits. Collectively, all LLC
slices associated with a given memory controller cache the entire memory address space
served by the memory controller.

In the private LLC organization, an LLC slice is private to a cluster of SMs. An LLC
slice caches the entire memory partition served by the respective memory controller for
only a single cluster of SMs. The LLC slice for a cache line is thus determined by the
cluster ID.

Figure 1.2 shows the performance for a private LLC organization normalized to that for
a shared LLC organization across three categories of workloads: shared cache friendly,
private cache friendly and shared/private cache neutral.

Cluster

| - [sm]sm]
=

|EnEnEn]

Cluster

|
|
|

Cluster
B [sv[sv] | [sv])
i IIETET }

NoC |] NoC

| Memory Controller | v

Memory Controller |

‘ Memory Controller

.o

Memory Controller |

(a) Shared LLC

(b) Private LLC

Figure 1.1: Shared and Private memory-side LLC organization in GPUs

We observe that for private cache friendly workloads, a bandwidth bottleneck is created
due to multiple SM clusters trying to access the same cache lines simultaneously. For
such workloads, replicating the cache lines across LLC slices in a private LLC organization
leads to better performance under private caching.
The shared cache friendly applications, on the other hand, suffer from a 3 increase in
miss rate under the private LLC organization, ultimately leading to lower performance.
Finally, the shared/private cache neutral applications lack inter-cluster locality and hence
are neutral to the LLC organization.

16
14
12
1
08
06
04
Z202
0

lormalized Performance

OShared LLC ®Private LLC

| | I | EDZ
0

LUD sP 3DC BT GEMM BP HM

(a) Shared cache friendly applications

DOSharedLLC ®Private LLC

AN RN SN NN MM

(b) Private cache friendly applications

OSharedLLC ®Private LLC

16

14

12

1

08
B

06
04
202
0

HM BS DWT2D MS BINO HG VA HM

(c) Shared/private cache neutral applications

Figure 1.2: Normalized performance for a shared versus private LLC

Chapter 2

Literature Survey

2.1 Decoupled L1 Caches

GPUs use per-core private local L1 caches which leads to low per-core L1 bandwidth
utilization while the L2 cache and memory are heavily utilised. Ibrahim et al. [1] proposed
a new DC-L1 (DeCoupled L1) cache wherein the L1 cache is separated from the GPU
core. This helps in reducing replication across the L1s and increases their bandwidth
utilisation. We can now aggregate the DC-L1 caches into bigger cache (maintaining
the total cache capacity), wherein each DC-L1 cache is accessed by a cluster of GPU
cores. The authors further go on to propose a Clustered DC-L1 design wherein the DC-
L1 caches are grouped into clusters and shared cache organization is implemented within
this cluster to avoid cache line replication in the cluster and also reduce replication across

all the DC-L1s.

Chapter 3

Proposed Idea

The authors propose adaptive last-level caching [2], an LLC organization that dynami-
cally reconfigures the LLC from a shared to private configuration, and vice-versa. They
have also adopted a two-stage hierarchical crossbar which offers similar performance to
concentrated and full crossbar but is much more area and power efficient.

3.1 NoC-Enabled Adaptive LLC

3.1.1 Coherence Implications

GPUs exploit software-based coherence to circumvent the need for hardware coherence
support. To support adaptive last-level caching, the LL.C needs to support a write-through
policy when configured as a private cache, and when the L1 cache is flushed, the private
LLC needs to be flushed as well.

Another concern for the private LLC is how to deal with the global memory atomic
operation which is handled by the raster operations (ROP) unit in the LLC. One solution
is to set a small size LLC near the memory controller that is always shared by all SMs to
handle atomic operations. Alternatively, one could dynamically opt for the shared LLC
organization if the workload contains global atomic operations.

3.1.2 Dynamic Reconfiguration

During a transition between the two LLC organizations, we first need to stall the SMs
and wait until there are no more in-flight packets in the NoC and memory system. We
then need to write back the dirty cache blocks and flush the LLC in the LLC to main
memory when transitioning from shared to private caching. Finally, we power-gate or
power-on the MC-routers to engage private and shared caching, respectively.

The overhead for these reconfiguration steps is a couple hundred cycles, which is minimal.

3.1.3 Dynamic Profiling

Profiling estimates LLC miss rate and bandwidth consumption of the private LLC orga-
nization while executing under a shared LLC. Each profiling phase takes 50K cycles. We
initiate a profiling phase every 1M-cycle epoch or whenever a new kernel comes in. The
runtime overhead for dynamic profiling is limited to 0.8% on average.

3.1.4 Multi-Program Support

If the co-executing applications prefer a different LLC mode, we can have different LLC
modes may be employed for the different applications as they co-execute on a multi-
tasking GPU. We can map the different programs across the different clusters as illus-
trated in Figure 3.1.4 to uniformly distribute the workload across the different clusters
while enabling the co-executing applications to access the entire LLC capacity.

.o

| Memory Controller | e \ Memory Controller |

Figure 3.1: Multiprogram Support

3.2 Reconfigurable H-Xbar Support

For a shared LLC configuration, all input ports in the MC router need to be connected
to any of the output ports, i.e. the MC router needs to be powered on. On the other
hand, in case of a private LLC configuration the input port needs to be connected to its
corresponding output port, i.e. the MC router needs to be bypassed. This reconfiguration
between power-gating and powering-on incurs an overhead of a couple tens of cycles.
Figure 3.2 illustrates the re-configurable MC-router to support adaptive last-level caching

in H-XDbar.

I"_'__'; power-gated part

Input
Port1

Crossbar

Input
Port P

X :’55

#OMpm
Port1

Figure 3.2: MC-router architecture in the reconfigurable H-Xbar

3.3 Reconfiguration Rules

The profiling information is used to decide whether to switch to a private LLC organiza-
tion or continue with a shared organization. For this we use the following reconfiguration

rules:

()utputi
Port P

e Rule #1 Transition from shared to private if both organizations lead to similar miss
rates. This indicates that the application is shared/private organization insensitive.
So, we can power-gate the MC routers to save significant power. We switch to
private LLC if the miss rate is within 2% of the miss rate in a shared organization.

e Rule #2 Transition from shared to private if increase in bandwidth overshadows
increase in miss rate.

e Rule #3 Transition from private to shared when a new kernel starts or at the start
of a new 1M-cycle epoch.

3.4 Model for Miss Rate and Bandwidth

In our attempt to quantify the trade-off between miss rate and bandwidth, we define a
new metric called the LLC Slice Parallelism (LSP) which is defined as the sum of all LLC
slice accesses (LLC;) divided by the maximum LLC slice access count for all N slices.

N
LSP = Z LLC;/MaxLLC; (3.1)
i=1
LSP can now be used to calculate the overall bandwidth:

BW = LLChy - LSP - LLCpy + LLCyniss - M EMpyy (3.2)

The first term represents the effective LLC bandwidth and the second term computes the
effective memory bandwidth.

Chapter 4

Conclusion

4.1 Work done so far

e Studied and reviewed the SIMT Core, Memory systems and the programming model
related to GPU architecture.

e Became comfortable with using GPGPU-Sim and simulated various tests and op-
erations on the simulator and analyzed the benchmark outputs received.

e Reviewed literature and analyzing and leveraging decoupled L1 caches.

e Reviewed the use of an Adaptive memory-side LLC organization for improved per-
formance, reduced power and area consumption.

4.2 Future plans

e Review the source code for the GPGPU-Sim simulator, trying to understand the
implementation for L2 caches.

e Add necessary components in the code to implement adaptive LLC organization.

e Compare the performance results for a variety of workloads.

4.3 End goal

The end goal for this summer project is to implement Adaptive Memory-side LL.C Caching
on GPGPU-Sim and then compare the performance results with Shared LLC organiza-
tion.

10

References

[1] M. A. Ibrahim, O. Kayiran, Y. Eckert, G. H. Loh, and A. Jog, “Analyzing and
leveraging decoupled 11 caches in gpus,” in 2021 IEEFE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 467-478, 2021.

2] X. Zhao, A. Adileh, Z. Yu, Z. Wang, A. Jaleel, and L. Eeckhout, “Adaptive memory-
side last-level gpu caching,” in Proceedings of the 46th International Symposium on
Computer Architecture, ISCA ’19, (New York, NY, USA), p. 411-423, Association for
Computing Machinery, 2019.

11

	List of Figures
	Introduction
	GPU Architecture
	Shared vs Private LLC

	Literature Survey
	Decoupled L1 Caches

	Proposed Idea
	NoC-Enabled Adaptive LLC
	Coherence Implications
	Dynamic Reconfiguration
	Dynamic Profiling
	Multi-Program Support

	Reconﬁgurable H-Xbar Support
	Reconfiguration Rules
	Model for Miss Rate and Bandwidth

	Conclusion
	Work done so far
	Future plans
	End goal

