

EE-338 Digital Signal Processing

Filter Design Assignment

Anubhav Bhatla 200070008

Reviewed by Arya Vishe, 21D070018

Contents

1	Student Details	4
2	Bandpass Filter Details	4
	2.1 Un-normalized Discrete-time Filter Specifications	4
	2.2 Normalized Digital Filter Specifications	4
	2.3 Analog Filter Specifications	5
	2.4 Frequency-transformed Lowpass Analog Filter	5
	2.5 Butterworth Analog Lowpass Transfer Function	6
	2.6 Butterworth Analog Bandpass Transfer Function	8
	2.7 Butterworth Discrete Time Filter Transfer Function	8
	2.8 Chebyshev Analog Lowpass Transfer Function	10
	2.9 Chebyshev Analog Bandpass Transfer Function	11
	2.10 Chebyshev Discrete Time Filter Transfer Function	11
	2.11 Elliptical Analog Lowpass Transfer Function	13
	2 11 1 Jacobian Elliptical Integrals	13
	2 11 2 Elliptical Filter Parameters	13
	2.11.2 Emptrear Filter Farameters	14
	2.12 Elliptical Analog Bandpass Transfer Function	15
	2.12 Elliptical Discrete Time Filter Transfer Function	15
	2.10 Elliptical Discrete Time Filter Transfer Function	17
	2.14 FIR Filter Talanceers	17
		11
3	Bandstop Filter Details	18
	3.1 Un-normalized Discrete-time Filter Specifications	18
	3.2 Normalized Digital Filter Specifications	18
	3.3 Analog Filter Specifications	18
	3.4 Frequency-transformed Lowpass Analog Filter	19
	3.5 Butterworth Analog Lowpass Transfer Function	19
	3.6 Butterworth Analog Bandstop Transfer Function	21
	3.7 Butterworth Discrete Time Filter Transfer Function	22
	3.8 Chebyshev Analog Lowpass Transfer Function	26
	3.9 Chebyshev Analog Bandstop Transfer Function	27
	3 10 Chebyshev Discrete Time Filter Transfer Function	$\frac{-1}{28}$
	3 11 Elliptical Analog Lowpass Transfer Function	29
	3 11 1 Jacobian Elliptical Integrals	$\frac{20}{29}$
	3 11 2 Elliptical Filter Parameters	20
	3 11 3 Poles and Zeroes	30
	3 12 Elliptical Analog Bandpass Transfer Function	31
	3.13 Elliptical Discrete Time Filter Transfer Function	91 91
	2.14 FID Filter Deremeters	22 01
	2.15 FID Discrete Time Filter	ວວ ໑໑
	5.15 FIR Discrete Time Filter	J J
4	Cascading the two filters	34
	4.1 Butterworth Cascaded Filter	34
	4.2 Chebyshev Cascaded Filter	35
	4.3 Elliptical Cascaded Filter	36
	4.4 FIR Cascaded Filter	37

5	MATLAB Simulations	38
	5.1 Acknowledgement	38
	5.2 Butterworth Bandpass Filter	38
	5.3 Butterworth Bandstop Filter	40
	5.4 Butterworth Cascaded filter	42
	5.5 Chebyshev Bandpass Filter	44
	5.6 Chebyshev Bandstop Filter	46
	5.7 Chebyshev Cascaded filter	48
	5.8 Elliptical Bandpass Filter	50
	5.9 Elliptical Bandstop Filter	52
	5.10 Elliptical Cascaded filter	54
	5.11 FIR Bandpass Filter	56
	5.12 FIR Bandstop Filter	58
	5.13 FIR Cascaded filter	60
6	Comparing the different filter types	62
7	Peer Reviews	63
	7.1 Arya Vishe - 20d070018	63
	7.2 Rajput Nikhileshsing Kailassing - 200070067	63

1 Student Details

Name	:	Anubhav Bhatla
Roll Number	:	200070008
Filter Number	:	4
Method used	:	Cascade of bandpass and bandstop filters

Filter Number = 4 = 11Q + RTherefore, Q = 0; R = 4 Frequency Band Group-I : 40 to 70 kHz Frequency Band Group-II : 190 to 220 kHz

2 Bandpass Filter Details

2.1 Un-normalized Discrete-time Filter Specifications

Given below are the filter specifications for the required bandpass filter:

- Passband : 40 220 kHz
- Stopband : 0 35 kHz and 225 300 kHz
- Transition band : 5 kHz on either sides of the passband
- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

2.2 Normalized Digital Filter Specifications

Sampling Rate = 600 kHz corresponds to 2π on the normalized frequency axis.

$$f_s \to 2\pi$$
$$\omega = 2\pi \times f/f_s$$

Therefore the normalized discrete filter specifications are as follows:

- Passband : $40\pi/300 220\pi/300$
- Stopband : 0 $35\pi/300$ and $225\pi/300$ π
- Transition band : $5\pi/300$ on either sides of the passband
- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

2.3 Analog Filter Specifications

The bilinear transformation is given as:

$$\Omega = \tan(\omega/2)$$

Therefore the corresponding analog filter specifications are as follows:

- Passband : 0.2126 (Ω_{p_1}) 2.246 (Ω_{p_2})
- Stopband : 0 0.1853 (Ω_{s_1}) and 2.4142 (Ω_{s_2}) ∞
- Transition band : 0.1853 0.2126 and 2.246 2.4142
- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

2.4 Frequency-transformed Lowpass Analog Filter

The bandpass transformation is given as follows:

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega}$$

where

$$\Omega_0 = \sqrt{\Omega_{p_1}\Omega_{p_2}} = 0.691$$
$$B = \Omega_{p_2} - \Omega_{p_1} = 2.0334$$

The lowpass transformations for various key points are given below:

Ω	Ω_L
0^{+}	-∞
$0.1853 \ (\Omega_{s_1})$	-1.1761 ($\Omega_{L_{s_1}}$)
$0.2126 \ (\Omega_{p_1})$	-1 $(\Omega_{L_{p_1}})$
$0.691 \ (\Omega_0)$	0
$2.246 \ (\Omega_{p_2})$	$1 \left(\Omega_{L_{p_2}} \right)$
2.4142 (Ω_{s_2})	$1.09 \; (\Omega_{L_{s_2}})$

Therefore the corresponding lowpass analog filter specifications are as follows:

- Passband Edge : 1 (Ω_{L_p})
- Stopband Edge : min($|\Omega_{L_{s_1}}|, |\Omega_{L_{s_2}}|$) = 1.09 (Ω_{L_s})
- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

2.5 Butterworth Analog Lowpass Transfer Function

Based on the tolerance in the passband and the stopband (both equal to δ), we define two new quantities:

$$D_1 = \frac{1}{(1-\delta)^2} - 1 = \frac{1}{0.85^2} - 1 = 0.3841$$
$$D_2 = \frac{1}{\delta^2} - 1 = \frac{1}{0.15^2} - 1 = 43.4444$$

Using these newly defined quantities, the minimum order for the Butterworth filter is given as: $(D_{i}(D_{i}))$

$$N_{min} = \left\lceil \frac{\log(D_2/D_1)}{2\log(\Omega_{L_s}/\Omega_{L_p})} \right\rceil = \left\lceil 27.4532 \right\rceil = 28$$

The cutoff frequency (Ω_c) of the analog lowpass analog filter has the following constraint:

$$\frac{\Omega_{L_p}}{D_1^{1/2N}} \le \Omega_c \le \frac{\Omega_{L_s}}{D_2^{1/2N}}$$
$$1.0172 \le \Omega_c \le 1.019$$

We can choose the value of Ω_c to be 1.018. Solutions to the following equation gives us the poles of the transfer function:

$$1 + \left(\frac{s_L}{j\Omega_c}\right)^{2N} = 1 + \left(\frac{s_L}{j1.018}\right)^{56} = 0$$

Figure 1: Poles of the Butterworth Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

$$p_1 = -1.0164 - 0.0570797j$$

$$p_2 = -1.0164 + 0.0570797j$$

$$p_3 = -1.00362 - 0.170521j$$

$$p_4 = -1.00362 + 0.170521j$$

$$p_5 = -0.978214 - 0.281819j$$

The analog lowpass transfer function can be written as follows:

$$H_{analog,LPF}(s_L) = \frac{\Omega_c^N}{\prod_{i=1}^{28} (s_L - p_i)}$$

The table given below contains the coefficients for the denominator of $H_{analog,LPF}(s_L)$.

	Degre	ee		$_{28}$ s	27		s_{26}		s_{25}		s ₂₄			s_{23}		s_{22}	
	Coeff	icient	; 1	1	8.155	57	164.81	15	995	.348	448	39.2	3	16094	.2	47667	.5
	Degree s_2		s_{21}		s ₂₀		s_{19}		s_{18} s_{17}				s_{16}		s_{15}		
	Coefficient 1		119	9687	259	441	4919	30	823	3820	122	271	30	1634	050	1951	758
,	L																
	Degree		s_{14}		s_{13}		$ s_{12} $	2		s_{11}		s_1	0	s_9)	s_8	
	Coeffici	ent	209	5170	202	2654	1 17	5491	.6	1365	5769	95	6020	0 58	8800	5 32	1375
Deg	gree	s_7		s_6		s_5		s_4		s	3		s_2		s_1		s_0
Coe	efficient	153	645	634	14.3	221	.88.6	64	13.9	7 1	473.7	75	252	2.897	28.	.8706	1.64792

Table 1: Coefficients for the denominator of $H_{analog,LPF}(s_L)$

2.6 Butterworth Analog Bandpass Transfer Function

The transformation between lowpass and bandpass is given by:

$$s_L = \frac{s^2 + \Omega_0^2}{Bs} \\ = \frac{s^2 + 0.4775}{2.0334s}$$

After substituting this value into $H_{analog,LPF}(s_L)$, we get $H_{analog,BPF}(s)$. Suppose $H_{analog,BPF}(s)$ is represented as N(s)/D(s), we have $N(s) = s^{28}$ and D(s) has the following coefficients:

Degree	s ₅₆	s_{55}	s ₅₄	s_{53}	s ₅₂	s ₅₁	s ₅₀
Coefficient	1.42e-09	5.24e-08	9.87e-07	1.25e-05	0.00012	0.00094	0.006113
		· ·		1			
Degree	s_{49}	s_{48}	s_{47}	s_{46}	s_{45}	s_{44}	s_{43}
Coefficient	0.03402	0.16527	0.70981	2.72202	9.39029	29.3080	83.1204
Degree	s_{42}	s_{41}	s_{40}	s_{39}	s_{38}	s_{37}	s_{36}
Coefficient	214.914	507.803	1098.28	2176.49	3953.82	6583.80	10044.5
Degree	s_{35}	s_{34}	s_{33}	s_{32}	s_{31}	s_{30}	s_{29}
Coefficient	14028.7	17916.1	20893.9	22217.7	21509.6	18933.1	15134.9
			1				
Degree	s_{28}	s_{27}	s_{26}	s_{25}	s_{24}	s_{23}	s_{22}
Coefficient	10979.7	7226.67	4316.53	2341.54	1154.84	518.561	212.315
Degree	s_{21}	s_{20}	s_{19}	s_{18}	s_{17}	s_{16}	s_{15}
Coefficient	5 79.3800	27.1381	8.49340	2.43544	0.64013	0.15423	0.03405
	11		1	1			
Degree	s ₁₄	s_{13}	s_{12}	s_{11}	s_{10}	s_9	s_8
Coefficient	0.00688	0.00127	0.00021	3.27e-05	4.53e-06	5.64 e- 07	6.27 e-08
			1	1			-
Degree	s_7	s_6	s_5	<i>s</i> ₄	s_3	s_2	s_1
Coefficient	6.16e-09	5.28e-10	3.88e-11	2.39e-12	1.18e-13	4.44e-15	1.12e-16

Degree	s_0
Coefficient	1.45e-18

Table 2: Coefficients for the denominator (D(s)) of $H_{analog,BPF}(s)$

2.7 Butterworth Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the Bilinear transformation:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

After substituting this value into $H_{analog,BPF}(s)$, we get $H_{discrete,BPF}(z)$. Suppose $H_{discrete,BPF}(z)$ is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

Degree	z^0	z^{-2}	z^{-4}	z^{-6}	z^{-8}	z^{-10}	z^{-12}	z^{-14}
Coefficient	1	-28	378	-3276	20475	-98280	376740	-1184040

Degree	z^{-16}	z^{-18}	z^{-20}	z^{-22}	z^{-24}	z^{-26}	z^{-28}
Coefficient	3108105	-6906900	13123110	-21474180	30421755	-37442160	40116600

Degree	z^{-30}	z^{-32}	z^{-34}	z^{-36}	z^{-38}	z^{-40}	z^{-42}
Coefficient	-37442160	30421755	-21474180	13123110	-6906900	3108105	-1184040

Degree	z^{-44}	z^{-46}	z^{-48}	z^{-50}	z^{-52}	z^{-54}	z^{-56}
Coefficient	376740	-98280	20475	-3276	378	-28	1

Table 3: Coefficients for the denominator (N(z)) of $H_{discrete,BPF}(z)$

	Degree		z^0	z^{-}	-1	z	-2		z^{-3}		z^{-4}	z^{-}	-5	z^{-}	6	
	Coefficien	t	182207	-1	424275	4	372394		-5912085		1825030	40	00202	11	697284	
											1		1			
Degree z		z^{-}	-7	z^{-}	-8	z^{-}	-9		z^{-10}		z^{-11}		z^{-12}		$ z^{-13} $	
Coefficient -2		-2	22430163	43	386676	14	60876	2	1206766	0	-400409	74	42690	92	31941	1509
_																
-	Degree	;	z^{-14}	z^{-}	15	2	-16	z	-17	2	2-18	z^-	19	2	z^{-20}	
(Coefficient		7578927	-43	8163451	1	.8035	3	3093507	51	676867	-29	541681	. -	366961	9
_					T				1		1					
I	Degree	z	-21	$ z^-$	-22	z^{-}	-23		z^{-24}		z^{-25}		z^{-26}		z^{-27}	
(Coefficient	1	9501109	46	534754	-1	273072	6	-334698	7	681639	9	244214	8	-334943	30
					1		1					-				
	Degree		z^{-28}		z^{-29}		z^{-30}		z^{-31}		z^{-32}	z	-33	z^{-}	-34	
	Coefficie	ent	-14128	880	13928	09	7322'	70	-507923	3	-321754	1	54836	12	3016	
																_
	Degree		z^{-35}	2	z^{-36}	2	z^{-37}		z^{-38}	2	z^{-39}	z^{-}	-40	$ z^{-}$	-41	
	Coefficien	t	-38936.6	3 -	40211.4	7	7421.72	2	11230.6	-	-848.321	-2	642.17	-4	9.0077	
	Degree		z^{-42}	2	z^{-43}		-44		z^{-45}		z^{-46}	z^{-}	-47	z^{-}	48	
	Coefficier	nt	516.007	7 5	53.2993	-8	81.5897	7	-15.1022		10.0542	2.'	74369	-0.	90113	
																_
	Degree		z^{-49}	2	2-50		-51		z^{-52}	;	z^{-53}	z^{-}	-54	z	-55	
	Coefficien	t	-0.34903	3 ().05003	0	.03049		-0.00071	-	-0.00166	-0	.00010	4.	29e-05	

Degree	z^{-56}
Coefficient	5.48e-06

Table 4: Coefficients for the denominator (D(z)) of $H_{discrete,BPF}(z)$

2.8 Chebyshev Analog Lowpass Transfer Function

Based on the tolerance in the passband (δ_p) and the stopband (δ_s) , we define the following quantities:

$$D_1 = \frac{1}{(1 - \delta_p)^2} - 1 = \frac{1}{0.922^2} - 1 = 0.1765$$
$$D_2 = \frac{1}{\delta_s^2} - 1 = \frac{1}{0.15^2} - 1 = 43.4444$$

Using these newly defined quantities, the minimum order for the Chebyshev filter is given as:

$$N_{min} = \left\lceil \frac{\cosh^{-1}(\sqrt{D_2/D_1})}{\cosh^{-1}(\Omega_{L_s}/\Omega_{L_p})} \right\rceil = \left\lceil 8.1803 \right\rceil = 9$$

Solutions to the following equation gives us the poles of the transfer function:

Figure 2: Poles of the Chebyshev Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

 $\begin{array}{l} p_1 = -0.03107 - 1.00045j \\ p_2 = -0.03107 + 1.00045j \\ p_3 = -0.08946 - 0.87978j \\ p_4 = -0.08946 + 0.87978j \\ p_5 = -0.13706 - 0.65300j \\ p_6 = -0.13706 + 0.65300j \\ p_7 = -0.16813 - 0.34745j \\ p_8 = -0.16813 + 0.34745j \\ p_9 = -0.17892 \end{array}$

The analog lowpass transfer function can be written as follows:

$$H_{analog,LPF}(s_L) = \frac{\prod_{i=1}^{9} p_i}{\prod_{i=1}^{9} (s_L - p_i)} = \frac{-0.0093}{\prod_{i=1}^{9} (s_L - p_i)}$$

The table given below contains the coefficients for the denominator of $H_{analog,LPF}(s_L)$.

	Degree		s_9	s	8	s	³ 7	s	6	s	5	
	Coefficie	nt	1	1	.03037	2	2.78083	2	2.14978	2	.56730	
D	egree	s_3			s_3		s_2		s_1		s_0	
Coefficient		1.	3982	0	0.8778	1	0.2896	8	0.0813	8	0.00929	98

Table 5: Coefficients for the denominator of $H_{analog,LPF}(s_L)$

2.9 Chebyshev Analog Bandpass Transfer Function

The transformation between lowpass and bandpass is given by:

$$s_L = \frac{s^2 + \Omega_0^2}{Bs} \\ = \frac{s^2 + 0.4775}{2.0334s}$$

After substituting this value into $H_{analog,LPF}(s_L)$, we get $H_{analog,BPF}(s)$. Suppose $H_{analog,BPF}(s)$ is represented as N(s)/D(s), we have $N(s) = s^9$ and D(s) has the following coefficients:

Degree	s ₁₈	s_{17}	s ₁₆	s_{15}	s_{14}	s_{13}
Coefficient	-0.18091	-0.37904	-2.85751	-4.71780	-16.3774	-20.5808
Degree	s ₁₂	s_{11}	s_{10}	s_9	s_8	s_7
Coefficient	-41.7941	-37.8187	-47.5911	-28.7158	-22.7205	-8.61965

Degree	s_6	s_5	s_4	s_3	s_2	s_1	s_0
Coefficient	-4.54767	-1.06912	-0.40616	-0.05586	-0.01615	-0.00102	-0.00023

Table 6: Coefficients for the denominator (D(s)) of $H_{analog,BPF}(s)$

2.10 Chebyshev Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the Bilinear transformation:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

After substituting this value into $H_{analog,BPF}(s)$, we get $H_{discrete,BPF}(z)$. Suppose $H_{discrete,BPF}(z)$ is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

Degree	z^0	z^{-2}	z^{-4}	z^{-6}	z^{-8}	z^{-10}	z^{-12}	z^{-14}	z^{-16}	z^{-18}
Coefficient	-1	9	-36	84	-126	126	-84	36	-9	1

Table 7: Coefficients for the denominator (N(z)) of $H_{discrete,BPF}(z)$

Degree	z^0	z^{-1}	z^{-2}	z^{-3}	z^{-4}	z^{-5}	z^{-6}
Coefficient	238.450	-810.845	1435.53	-2060.80	3024.83	-4071.51	4775.51
		-					
Degree	z^{-7}	$ z^{-8} $	z^{-9}	z^{-10}	z^{-11}	z^{-12}	z^{-13}
Degree Coefficient	z^{-7} -5147.73	z^{-8} 5309.76	z^{-9} -5081.28	z^{-10} 4488.49	z^{-11} -3681.63	z^{-12} 2821.27	z^{-13} -1975.18

Degree	z^{-14}	z^{-15}	z^{-16}	z^{-17}	z^{-18}
Coefficient	1256.41	-711.104	357.456	-141.082	34.5338

Table 8: Coefficients for the denominator (D(z)) of $H_{discrete,BPF}(z)$

2.11 Elliptical Analog Lowpass Transfer Function

2.11.1 Jacobian Elliptical Integrals

The elliptical function $\omega = sn(z,k)$ can be defined using the elliptical integral:

$$z = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 sin^2\theta}}$$

Using a change of variables, we get

$$z = \int_0^\omega \frac{dt}{\sqrt{(1 - k^2 t^2)(1 - t^2)}}$$

where $\omega = sin(\phi(z, k))$ and k is called the elliptic modulus with $0 \le k \le 1$. The three elliptical functions cn, dn, and cd are defined as follows:

$$\omega = cn(z,k) = cos\phi(z,k)$$
$$\omega = dn(z,k) = \frac{d}{dz}\phi(z,k)$$
$$\omega = cd(z,k) = \frac{cn\phi(z,k)}{dn\phi(z,k)}$$

The complete elliptical integral is defined as the value of z at $\phi = \pi/2$

$$K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

at $\phi = \pi/2$, the elliptical functions are defined as

$$sn(K,k) = 1$$
 & $cd(K,k) = 0$

The complementary elliptical modulus $k' = \sqrt{1-k^2}$ can also be used to define the complete elliptical integral

$$K(k') = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k'^2 \sin^2\theta}}$$

2.11.2 Elliptical Filter Parameters

Based on the tolerance in the passband (δ_p) and the stopband (δ_s) , we define the following quantities:

$$D_1 = \sqrt{\frac{1}{(1-\delta_p)^2} - 1} = \sqrt{\frac{1}{(0.922)^2} - 1} = 0.42$$
$$D_2 = \sqrt{\frac{1}{(\delta_s)^2} - 1} = \sqrt{\frac{1}{(0.15)^2} - 1} = 6.591$$
$$k_1 = \frac{D_1}{D_2} = \frac{0.42}{6.591} = 0.0637$$
$$k'_1 = \sqrt{1-k_1^2} = 0.998$$
$$k = \frac{\Omega_{L_p}}{\Omega_{L_s}} = \frac{1}{1.09} = 0.9174$$

$$k' = \sqrt{1 - k^2} = 0.398$$

Using these newly defined quantities, the minimum order for the Elliptical filter is given as:

$$N_{min} = \left\lceil \frac{K(k) \times K(k_1')}{K(k') \times K(k_1)} \right\rceil$$

where

$$K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

The required elliptical integral values can be calculated using MATLAB:

$$K(k) = 2.3641$$
 $K(k'_1) = 4.1429$ $K(k') = 1.6392$ $K(k_1) = 1.5724$
 $N_{min} = \lceil 3.8 \rceil = 4$

2.11.3 Poles and Zeroes

We define L and r as follows:

$$L = \lfloor \frac{N}{2} \rfloor \quad \& \quad r = mod(N, 2)$$
$$u_i = \frac{2i - 1}{N} \qquad i = 1, 2....L$$
$$\zeta_i = cd(u_i, k)$$

The zeroes of the transfer function $H_{analog,LPF}(s_L)$ are given as follows:

$$z_i = j\Omega_i = \frac{j}{k \cdot \zeta_i} \qquad i = 1, 2....L$$

We define ν_0 as follows:

$$\nu_0 = -\frac{j}{N} s n^{-1}(\frac{j}{D_1}, k_1)$$

The poles of the transfer function $H_{analog,LPF}(s_L)$ are given as follows:

$$p_i = j \cdot cd((u_i - j\nu_0), k)$$
 $i = 1, 2....L$

Since N is odd, there is an additional pole given by

$$p_0 = j \cdot cd((1 - j\nu_0), k) = j \cdot sn(j\nu_0, k)$$

The poles and zeroes are given as follows:

$$\begin{array}{c} z_1 = 1.09969 j \\ z_2 = -1.09969 j \\ z_3 = 1.93712 j \\ z_4 = -1.93712 j \\ p_1 = -0.0481 + 1.01142 j \\ p_2 = -0.0481 - 1.01142 j \\ p_3 = -0.44991 + 0.71947 j \\ p_4 = -0.44991 - 0.71947 j \end{array}$$

The analog lowpass transfer function can be written as follows:

$$H_{analog,LPF}(s_L) = 0.922 \frac{\left(\prod_{i=1}^4 p_i\right) \left(\prod_{i=1}^4 (s_L - z_i)\right)}{\left(\prod_{i=1}^4 z_i\right) \left(\prod_{i=1}^4 (s_L - p_i)\right)}$$

The tables given below contains the coefficients for the numerator and denominator of $H_{analog,LPF}(s_L)$.

Figure 3: Poles and Zeroes of the Elliptical Transfer Function

Degree	s_4	s_2	s_0
Coefficient	0.15	0.74426	0.68068

Table 9: Coefficients for the numerator of $H_{analog,LPF}(s_L)$

2.12 Elliptical Analog Bandpass Transfer Function

The transformation between lowpass and bandpass is given by:

$$s_L = \frac{s^2 + \Omega_0^2}{Bs} \\ = \frac{s^2 + 0.4775}{2.0334s}$$

After substituting this value into $H_{analog,LPF}(s_L)$, we get $H_{analog,BPF}(s)$. Suppose $H_{analog,BPF}(s)$ is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:

2.13 Elliptical Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the Bilinear transformation:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

After substituting this value into $H_{analog,BPF}(s)$, we get $H_{discrete,BPF}(z)$. Suppose $H_{discrete,BPF}(z)$ is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

Degree	s_4	s_3	s_2	s_1	s_0
Coefficient	1	0.99602	1.8319	0.99184	0.73826

Table 10: Coefficients for the denominator of $H_{analog,LPF}(s_L)$

Degree	s_8	s_6	s_4	s_2	s_0
Coefficient	0.00787	0.1764	0.77513	0.0402	0.00041

Table 11: Coefficients for the numerator (N(s)) of $H_{analog,BPF}(s)$

Degree	s_8	s_7	s_6	s_5
Coefficient	0.05244	0.1062	0.49734	0.58942

Degree	s_4	s_3	s_2	s_1	s_0
Coefficient	1.11288	0.28139	0.11335	0.01156	0.00272

Table 12: Coefficients for the denominator (D(s)) of $H_{analog,BPF}(s)$

	Degree	e	z^0	z^{-1}	z^{-2}	z^{-3}					
	Coefficient		1	-0.60442	-2.00243	0.12718]				
Degree z^-		z^{-4}		z^{-5}	z^{-6}	z^{-7}	z^{-8}				
Coefficient		3.06	394	0.12718	-2.00243	-0.60442	1				

Table 13: Coefficients for the numerator (N(z)) of $H_{discrete,BPF}(z)$

Degree	z^0	z^{-1}	z^{-2}	z^{-3}
Coefficient	2.76731	-3.11756	-0.55727	-0.72486

Degree	z^{-4}	z^{-5}	z^{-6}	z^{-7}	z^{-8}
Coefficient	4.43159	-1.77104	-0.37123	-0.74971	0.79016

Table 14: Coefficients for the denominator (D(z)) of $H_{discrete,BPF}(z)$

2.14 FIR Filter Parameters

Based on the required filter specifications, we define the following quantities:

$$A = -20 \log_{10} \delta = -20 \log_{10} 0.15 = 16.4782$$

Since A < 21, we take $\alpha = \beta = 0$, and therefore the Kaiser window will be rectangular in shape. The minimum width of the Kaiser window can be calculated using:

$$M \ge 1 + \frac{A - 8}{2.285\Delta\omega_t} = 71.8627$$

where $\Delta \omega_t$ is the transition bandwidth, i.e., $5\pi/300$. We take the next odd integer value, i.e., 73. However, according to simulations, M = 91 is the minimum window width which properly meets specifications.

2.15 FIR Discrete Time Filter

The coefficients for the obtained FIR filter are given as follows:

```
      columns 1 through 19

      0.0000
      0.0138
      0.0044
      0.0019
      0.0104
      -0.0029
      -0.0124
      -0.0127
      -0.0026
      -0.0125
      0.0059
      -0.0042
      0.0102
      -0.0108
      0.0190

      columns 19
      through 18

      0.0118
      -0.0009
      0.0175
      -0.0078
      -0.0078
      0.0019
      -0.0227
      -0.0023
      0.0105
      -0.0010
      0.0037
      0.0005
      0.0347
      0.0405
      -0.0022

      0.0118
      -0.0029
      0.0125
      -0.0023
      0.0105
      -0.0021
      0.0010
      0.0105
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0125
      -0.0126
      -0.0126
      -0.0126
      -0.0126
      -0.0126
      -0.0126
      -0.0126
      -0.0126
      -0.0126</
```

Figure 4: Coefficients of $H_{discrete,BPF}(z)$

3 Bandstop Filter Details

3.1 Un-normalized Discrete-time Filter Specifications

Given below are the filter specifications for the required bandpass filter:

- Stopband : 75 185 kHz
- \bullet Passband : 0 70 kHz and 190 300 kHz
- Transition band : 5 kHz on either sides of the stopband
- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

3.2 Normalized Digital Filter Specifications

Sampling Rate = 600 kHz corresponds to 2π on the normalized frequency axis.

$$f_s
ightarrow 2\pi$$
 $\omega = 2\pi imes f/f_s$

Therefore the normalized discrete filter specifications are as follows:

- Stopband : $75\pi/300 185\pi/300$
- Passband : 0 $70\pi/300$ and $190\pi/300$ π
- Transition band : $5\pi/300$ on either sides of the stopband
- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

3.3 Analog Filter Specifications

The bilinear transformation is given as:

$$\Omega = \tan(\omega/2)$$

Therefore the corresponding analog filter specifications are as follows:

- Stopband : 0.4142 (Ω_{s_1}) 1.455 (Ω_{s_2})
- Passband : 0 0.3839 (Ω_{p_1}) and 1.5399 (Ω_{p_2}) ∞
- Transition band : 0.3839 0.4142 and 1.455 1.5399

- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

3.4 Frequency-transformed Lowpass Analog Filter

The bandpass transformation is given as follows:

$$\Omega_L = \frac{B\Omega}{\Omega_0^2 - \Omega^2}$$

where

$$\Omega_0 = \sqrt{\Omega_{p_1} \Omega_{p_2}} = 0.7689$$
$$B = \Omega_{p_2} - \Omega_{p_1} = 1.156$$

The lowpass transformations for various key points are given below:

Ω	Ω_L
0^{+}	-0+
$0.3839 \ (\Omega_{p_1})$	$1 \left(\Omega_{L_{p_1}} \right)$
$0.4142 \ (\Omega_{s_1})$	1.1411 ($\Omega_{L_{s_1}}$)
$0.7689^- \ (\Omega_0^-)$	∞
$0.7689^+ \ (\Omega_0^+)$	$-\infty$
$1.455 \ (\Omega_{s_2})$	-1.1024 ($\Omega_{L_{s_2}}$)
1.5399 (Ω_{p_2})	-1 $(\Omega_{L_{p_2}})$

Therefore the corresponding lowpass analog filter specifications are as follows:

- Passband Edge : 1 (Ω_{L_p})
- Stopband Edge : $\min(|\Omega_{L_{s_1}}|, |\Omega_{L_{s_2}}|) = 1.1024 \ (\Omega_{L_s})$
- Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband. 0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is because in case of an oscillatory passband, after cascading the effective tolerance will be $(1 - \delta_p)^2 > 0.85$. Therefore, $\delta_p < 0.078$.
- Passband nature : Monotonic
- Stopband nature : Monotonic

3.5 Butterworth Analog Lowpass Transfer Function

Based on the tolerance in the passband and the stopband (both equal to δ), we define two new quantities:

$$D_1 = \frac{1}{(1-\delta)^2} - 1 = \frac{1}{0.85^2} - 1 = 0.3841$$

$$D_2 = \frac{1}{\delta^2} - 1 = \frac{1}{0.15^2} - 1 = 43.4444$$

Using these newly defined quantities, the minimum order for the Butterworth filter is given as: $(P_{i}, (P_{i}))$

$$N_{min} = \left\lceil \frac{\log(D_2/D_1)}{2\log(\Omega_{L_s}/\Omega_{L_p})} \right\rceil = \left\lceil 24.2501 \right\rceil = 25$$

The cutoff frequency (Ω_c) of the analog lowpass analog filter has the following constraint:

$$\frac{\Omega_{L_p}}{D_1^{1/2N}} \le \Omega_c \le \frac{\Omega_{L_s}}{D_2^{1/2N}}$$
$$1.0193 \le \Omega_c \le 1.0269$$

We can choose the value of Ω_c to be 1.02. Solutions to the following equation gives us the poles of the transfer function:

$$1 + \left(\frac{s_L}{j\Omega_c}\right)^{2N} = 1 + \left(\frac{s_L}{j1.02}\right)^{50} = 0$$

Figure 5: Poles of the Butterworth Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

$$p_1 = -1.02$$

$$p_2 = -1.01196 - 0.12784j$$

$$p_3 = -1.01196 + 0.12784j$$

$$p_4 = -0.987955 - 0.253664j$$

$$p_5 = -0.987955 + 0.253664j$$

$$p_6 = -0.948372 - 0.375487j$$

$$p_7 = -0.948372 + 0.375487j$$

$$p_8 = -0.893833 - 0.491389j$$

$$p_9 = -0.893833 + 0.491389j$$

$$p_{10} = -0.825197 - 0.599541j$$

$$\begin{array}{l} p_{11}=-0.825197+0.599541 j \\ p_{12}=-0.743548-0.698238 j \\ p_{13}=-0.743548+0.698238 j \\ p_{14}=-0.650172-0.785924 j \\ p_{15}=-0.650172+0.785924 j \\ p_{16}=-0.546543-0.861214 j \\ p_{17}=-0.546543+0.861214 j \\ p_{18}=-0.434295-0.922924 j \\ p_{19}=-0.434295+0.922924 j \\ p_{20}=-0.315197-0.970078 j \\ p_{21}=-0.315197+0.970078 j \\ p_{22}=-0.191129-1.00193 j \\ p_{23}=-0.191129+1.00193 j \\ p_{25}=-0.0640463-1.01799 j \\ p_{25}=-0.0640463+1.01799 j \end{array}$$

The analog lowpass transfer function can be written as follows:

$$H_{analog,LPF}(s_L) = \frac{\Omega_c^N}{\prod_{i=1}^{25} (s_L - p_i)}$$

The table given below contains the coefficients for the denominator of $H_{analog,LPF}(s_L)$.

Degree	s_{25} s_{24}		:	s_{23}		s_2	22	s	21	s_2	D	s_{19}	9
Coefficient	1 16.2444		2444	13	131.941 7		12.554	54 2870.7		91	78.10	24	186.0
Degree	s_{18}	s ₁₈		s_{16}			s_{15}		s_{14}	ę	313	s	12
Coefficient	53871.5		10320	103204 1721		59	9 252246		326553		374913	3	82411
Degree	s_{11}		s_{10}		s_9		s_8		s_7	s	6	s_{i}	5
Coefficient	34654	10	278500)	197757	7	123339		66982.4		1287.2	1	2352.5

Degree	s_4	s_3	s_2	s_1	s_0
Coefficient	4019.77	1038.05	199.979	25.6159	1.64060

Table 15: Coefficients for the denominator of $H_{analog,LPF}(s_L)$

3.6 Butterworth Analog Bandstop Transfer Function

The transformation between lowpass and bandstop is given by:

$$s_L = \frac{Bs}{s^2 + \Omega_0^2} \\ = \frac{1.156s}{s^2 + 0.7689}$$

After substituting this value into $H_{analog,LPF}(s_L)$, we get $H_{analog,BSF}(s)$. Suppose $H_{analog,BSF}(s)$ is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:

Degree	s ₅₀	s_{48}	s_{46}	s_{44}	s_{42}	s_{40}	s_{38}
Coefficient	9.06925	0.00013	0.00095	0.00430	0.01400	0.03477	0.06850
Degree	s_{36}	s_{34}	s_{32}	s_{30}	s_{28}	s_{26}	s ₂₄
Coefficient	0.10991	0.14618	0.16322	0.15436	0.12442	0.08580	0.05072
		1					
Degree	s_{22}	s_{20}	s_{18}	s_{16}	s ₁₄	s_{12}	s_{10}
Coefficient	0.02569	0.01113	0.00411	0.00128	0.00033	7.36e-05	1.30e-05

Degree	s_8	s_6	s_4	s_2	s_0
Coefficient	1.83e-06	1.97e-07	1.52e-08	7.50e-10	1.77e-11

Table 16: Coefficients for the numerator (N(s)) of ${\cal H}_{analog,BSF}(s)$

3.7 Butterworth Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the Bilinear transformation:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

After substituting this value into $H_{analog,BSF}(s)$, we get $H_{discrete,BSF}(z)$. Suppose $H_{discrete,BSF}(z)$ is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

D							
Degree	s_{50}	s_{49}	s_{48}	s_{47}	s_{46}	s_{45}	s_{44}
Coefficient	9.06e-06	0.00016	6 0.00161	0.01118	0.06071	0.27202	1.04022
			1				
Degree	s_{43}	s_{42}	s_{41}	s_{40}	s_{39}	s_{38}	s_{37}
Coefficient	3.47189	10.2758	27.2885	65.6029	143.767	288.785	534.032
			-				
Degree	s_{36}	s_{35}	s_{34}	s_{33}	s_{32}	s_{31}	s_{30}
Coefficient	912.365	1444.17	2122.87	2903.31	3699.87	4398.73	4883.52
Degree	s_{29}	s_{28}	s_{27}	s ₂₆	s_{25}	s_{24}	s_{23}
Coefficient	5066.74	4915.43	4460.82	3788.00	3010.38	2239.08	1558.60
		-	-	1	1	L	
Degree	s_{22}	s_{21}	s_{20}	s_{19}	s ₁₈	s_{17}	s_{16}
Coefficient	1015.17	618.541	352.398	187.623	93.2840	43.2687	18.7009
·							
Degree	s_{15}	s_{14}	s_{13}	s ₁₂	s ₁₁	s_{10}	s_9
Coefficient	7.52004	2.80821	0.97160	0.31056	0.09139	0.02465	0.00606
·		1		1		· · · · · · · · · · · · · · · · · · ·	
Degree	s_8	s_7	s_6	s_5	s_4	s_3	s_2
Coefficient	0.00134	0.00026	4.77e-05	7.37e-06	9.73e-07	1.05e-07	9.02e-09
I	I	I	1		1	1	1

Degree	s_1	s_0
Coefficient	5.41e-10	1.77e-11

Table 17: Coefficients for the denominator (D(s)) of $H_{analog,BSF}(s)$

	Degree			z^0	$ z^-$	-1	z^{-2}	2	z^{-3}	3		z^{-4}		z^{-5}	5	z	z^{-6}		
	Co	effici	ent	1	-15	2.8496	104	1.254	-62	0.69	98	300	5.72	-12	323.1	4	4156	.9	
			_			-	-		1										
Degree		z^{-7}	z^{-7}		-8	z^{-9}		z^{-}	z^{-10}		z^{-11}		z^{-}	z^{-12}		z^{-13}			
Coefficient		ent	-140823		4	05721	-1066723			2581279		-5785163		12073338		38	-23561016		
										1									
Deg	gree		z^{-1}	4		z^{-15}		z^{-16}	5		z^{-17}			z^{-18}	3		z^{-19}		
Coe	efficie	ent	431	5051'	7	-74381	598	1209	98309	9	-18	6059;	322	2710)26690) .	-374	4781	.60
														1					
Degr	ee		z^{-20}			z^{-21}		$ z^{-2}$	z^{-22}		z^{-23}		z^{-24}			z^{-25}			
Coef	ficier	nt	4913	8566	0 .	-61293	5697	727	73514	18	-8	2159_{-}	4803	88	376733	38	-90	5492	2148
Degr	ee		z^{-26}			z^{-27}		z^{-28}			$ z^-$	-29		z^{-30}			z^{-31}		
Coef	ficier	nt	8837	6733	8	-821594803		727351418		-612935697		491385660		60	-374478160		3160		
		11												·		'			
De	gree		$ z^{-3}$	32		z^{-33}			-34			z^{-35}		z^{-}	-36		z^{-3}	7	
Co	effici	ent	271	.0266	690	-1860)5932	2 1	20983	8099) .	-7438	31598	43	15051	7	-235	5610	16
L II																			
De	egree	;	$ z^-$	-38		z^{-39}		z^{-40})	$ z^-$	-41		z^{-42}	2	z^{-43}		z^{-}	-44	
Coefficient		ient	12	0733	38	-5785163		2581	1279	-1	1066723 4		4057	721 -1408		823	44	156	.9
	٦	D			_/	15	_4	3	_47	7		_48		_40	a		-50		
		Deg	gree		z^{-2}	10	z^{-40}	5	$ z^{-4} $		$ z^{-48} $			z^{-49}		z^-	z^{-50}		

Degree	2 40	z 40	2 "'	z =0	z z	z or
Coefficient	-12323.1	3005.72	-620.698	104.254	-12.8496	1

Table 18: Coefficients for the numerator $\left(N(z)\right)$ of $H_{discrete,BSF}(z)$

Degree		z^0		z^{-}	-1	z^{-}	-2		-3	;	z^{-4}		z^{-5}		z^{-6}	3
Coeffici	ient	48	819.2	-3	80094	4 16	8898	. 0	547277	79	14384	359	-3232	28276	641	159832
				·				·								
Degree z^{-7}			z^{-8}		z	z^{-9}		z^{-1}	z^{-10}		z^{-11}		z^{-12}			
Coefficie	Coefficient $ $ -114750228		228	187637343		3 -2	28343	89139	398	36690	67	-52529	2603	651	505460	
Degree		z^{-1}	13		z^{-14}		z	-15		z^{-1}	16		z^{-17}		z^{-1}	.8
Coefficie	ent	-76	3524'	799	8481	149351	1 -8	89528	34994	899	98993	28	-86278	7039	790	118905
D		-1	19		-20)		-21			22		-23		2	24
Degree		z '			<i>z</i> - •	,		21		<i>z</i> -			z -0			
Coefficient -691896295		295	5798	373208	8 -4	16543	435054 3579		795853	20	20 -263869984		186	466566		
Degr	ree		z^{-25}		Â	z^{-26}		z^{-27}	7	$ z^-$	-28		z^{-29}		z^{-30}	
Coef	ficier	nt	-1263	31823	33 82020803		803	03 -5103236		30)4116	34	-17347	734	9465	060
Degr	ee		z^{-31}		$ z^{-3}$	2	z^{-3}	33	z^{-}	34	z^{-3}	35	z^{-3}	6	z^{-37}	,
Coeff	ficien	t -	-4934	781	245	5742	-11	6485	8 52	5828	-22	5459	9 916	18.2	-351	91.4
Degr	ree		z^{-38}		z^{-39}		z^{-40}	0	$ z^{-41} $		z^{-4}	2	z^{-43}	5	z^{-44}	1
Coefficient 12737.8		-432	8.44	137_{-}	4.78	-405	.909	110	.677	-27.6	5316	6.25	019			
	Degr	ee		z^{-45}		z^{-46}	z^{-4}		7	z^{-4}	z^{-48} z^{-4}		$-49 z^{-50}$)	ļ
	Coef	ficie	nt	-1.26	5198	0.22	316	-0.0	3349	0.00	0408	-0.0	00036	2.04	e-05	

Table 19: Coefficients for the denominator $\left(D(z)\right)$ of $H_{discrete,BSF}(z)$

3.8 Chebyshev Analog Lowpass Transfer Function

Based on the tolerance in the passband (δ_p) and the stopband (δ_s) , we define two new quantities:

$$D_1 = \frac{1}{(1 - \delta_p)^2} - 1 = \frac{1}{0.922^2} - 1 = 0.1765$$
$$D_2 = \frac{1}{\delta_s^2} - 1 = \frac{1}{0.15^2} - 1 = 43.4444$$

Using these newly defined quantities, the minimum order for the Chebyshev filter is given as:

$$N_{min} = \left\lceil \frac{\cosh^{-1}(\sqrt{D_2/D_1})}{\cosh^{-1}(\Omega_{L_s}/\Omega_{L_p})} \right\rceil = \left\lceil 7.6767 \right\rceil = 8$$

Solutions to the following equation gives us the poles of the transfer function:

Figure 6: Poles of the Chebyshev Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

 $\begin{array}{l} p_1 = -0.03932 - 1.00051 j \\ p_2 = -0.03932 + 1.00051 j \\ p_3 = -0.11199 - 0.84819 j \\ p_4 = -0.11199 + 0.84819 j \\ p_5 = -0.16760 - 0.56674 j \\ p_6 = -0.16760 + 0.56674 j \\ p_7 = -0.19770 - 0.19901 j \\ p_8 = -0.19770 + 0.19901 j \end{array}$

The analog lowpass transfer function can be written as follows:

$$H_{analog,LPF}(s_L) = \frac{\prod_{i=1}^{8} p_i}{\sqrt{(1+D_1)} \prod_{i=1}^{8} (s_L - p_i)} = \frac{0.0186}{\prod_{i=1}^{8} (s_L - p_i)}$$

The table given below contains the coefficients for the denominator of $H_{analog,LPF}(s_L)$.

Degree	s_8	s_7	s_6	s_5	s_4
Coefficient	1	1.03321	2.53376	1.89632	1.99933

Degree	s_3	s_2	s_1	s_0
Coefficient	0.99079	0.50590	0.12846	0.02017

Table 20: Coefficients for the denominator of $H_{analog,LPF}(s_L)$

3.9 Chebyshev Analog Bandstop Transfer Function

The transformation between lowpass and bandstop is given by:

$$s_L = \frac{Bs}{s^2 + \Omega_0^2} \\ = \frac{1.156s}{s^2 + 0.7689}$$

After substituting this value into $H_{analog,LPF}(s_L)$, we get $H_{analog,BSF}(s)$. Suppose $H_{analog,BSF}(s)$ is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:

Degree	s ₁₆	s_{14}	s_{12}	s_{10}	s_8
Coefficient	0.02435	0.11513	0.23818	0.28157	0.20805

Degree	s_6	s_4	s_2	s_0
Coefficient	0.09838	0.02908	0.00491	0.00036

Table 21: Coefficients for the numerator (N(s)) of $H_{analog,BSF}(s)$

Degree	s ₁₆	s_{15}	s_{14}	s_{13}	s_{12}	s_{11}
Coefficient	0.02641	0.19442	1.00995	2.80826	8.07172	12.4740

Degree	s ₁₀	s_9	s_8	s_7	s_6	s_5
Coefficient	23.9124	21.2268	27.2145	12.5471	8.35493	2.57623

Degree	s_4	s_3	s_2	s_1	s_0
Coefficient	0.98539	0.20265	0.04308	0.00490	0.00039

Table 22: Coefficients for the denominator (D(s)) of $H_{analog,BSF}(s)$

3.10 Chebyshev Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the Bilinear transformation:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

After substituting this value into $H_{analog,BSF}(s)$, we get $H_{discrete,BSF}(z)$. Suppose $H_{discrete,BSF}(z)$ is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

	Degree		z^0	z	-1	z	-2	z	-3	z^{-}	-4	z^{-}	-5	
	Coefficien	nt	1	-4	4.11189	1	5.3971	-3	36.3872	7	7.2679	-1	26.378	
					1									
D	egree	z	-6		z^{-7}		z^{-8}		z^{-9}		z^{-10}		z^{-11}	
С	oefficient	18	87.01	4	-226.05	8	248.29	2	-226.05	8	187.01	4	-126.37	8

Degree	z^{-12}	z^{-13}	z^{-14}	z^{-15}	z^{-16}
Coefficient	77.2679	-36.3872	15.3971	-4.11189	1

Table 23: Coefficients for the numerator (N(z)) of $H_{discrete,BSF}(z)$

Degree	z^0	z^{-1}	z^{-2}	z^{-3}	z^{-4}	z^{-5}
Coefficient	121.653	-236.394	162.520	-143.341	359.238	-310.484

Degree	z^{-6}	z^{-7}	z^{-8}	z^{-9}	z^{-10}	z^{-11}
Coefficient	17.0803	-63.9651	235.689	-50.0155	-99.7057	-40.0692

Degree	z^{-12}	z^{-13}	z^{-14}	z^{-15}	z^{-16}
Coefficient	86.1319	17.3447	-21.9911	-25.4840	17.5844

Table 24: Coefficients for the denominator (D(z)) of $H_{discrete,BSF}(z)$

3.11 Elliptical Analog Lowpass Transfer Function

3.11.1 Jacobian Elliptical Integrals

The elliptical function $\omega = sn(z,k)$ can be defined using the elliptical integral:

$$z = \int_0^\phi \frac{d\theta}{\sqrt{1 - k^2 \sin^2\theta}}$$

Using a change of variables, we get

$$z = \int_0^\omega \frac{dt}{\sqrt{(1 - k^2 t^2)(1 - t^2)}}$$

where $\omega = sin(\phi(z, k))$ and k is called the elliptic modulus with $0 \le k \le 1$. The three elliptical functions cn, dn, and cd are defined as follows:

$$\omega = cn(z,k) = cos\phi(z,k)$$
$$\omega = dn(z,k) = \frac{d}{dz}\phi(z,k)$$
$$\omega = cd(z,k) = \frac{cn\phi(z,k)}{dn\phi(z,k)}$$

The complete elliptical integral is defined as the value of z at $\phi = \pi/2$

$$K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

at $\phi = \pi/2$, the elliptical functions are defined as

$$sn(K,k) = 1$$
 & $cd(K,k) = 0$

The complementary elliptical modulus $k' = \sqrt{1-k^2}$ can also be used to define the complete elliptical integral

$$K(k') = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k'^2 \sin^2\theta}}$$

3.11.2 Elliptical Filter Parameters

Based on the tolerance in the passband (δ_p) and the stopband (δ_s) , we define the following quantities:

$$D_1 = \sqrt{\frac{1}{(1-\delta_p)^2} - 1} = \sqrt{\frac{1}{(0.922)^2} - 1} = 0.42$$
$$D_2 = \sqrt{\frac{1}{(\delta_s)^2} - 1} = \sqrt{\frac{1}{(0.15)^2} - 1} = 6.591$$
$$k_1 = \frac{D_1}{D_2} = \frac{0.42}{6.591} = 0.0637$$
$$k'_1 = \sqrt{1-k_1^2} = 0.998$$
$$k = \frac{\Omega_{L_p}}{\Omega_{L_s}} = \frac{1}{1.1024} = 0.9071$$

$$k' = \sqrt{1 - k^2} = 0.4209$$

Using these newly defined quantities, the minimum order for the Elliptical filter is given as:

$$N_{min} = \left\lceil \frac{K(k) \times K(k_1')}{K(k') \times K(k_1)} \right\rceil$$

where

$$K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 sin^2 \theta}}$$

The required elliptical integral values can be calculated using MATLAB:

$$K(k) = 2.31254$$
 $K(k'_1) = 4.14286$ $K(k') = 1.64828$ $K(k_1) = 1.57239$
 $N_{min} = \lceil 3.69654 \rceil = 4$

3.11.3 Poles and Zeroes

We define L and r as follows:

$$L = \lfloor \frac{N}{2} \rfloor \quad \& \quad r = mod(N, 2)$$
$$u_i = \frac{2i - 1}{N} \qquad i = 1, 2....L$$
$$\zeta_i = cd(u_i, k)$$

The zeroes of the transfer function $H_{analog,LPF}(s_L)$ are given as follows:

$$z_i = j\Omega_i = \frac{j}{k \cdot \zeta_i} \qquad i = 1, 2....L$$

We define ν_0 as follows:

$$\nu_0 = -\frac{j}{N} s n^{-1}(\frac{j}{D_1}, k_1)$$

The poles of the transfer function $H_{analog,LPF}(s_L)$ are given as follows:

$$p_i = j \cdot cd((u_i - j\nu_0), k)$$
 $i = 1, 2....L$

Since N is odd, there is an additional pole given by

$$p_0 = j \cdot cd((1 - j\nu_0), k) = j \cdot sn(j\nu_0, k)$$

The poles and zeroes are given as follows:

$$\begin{array}{c} z_1 = 1.09969 j \\ z_2 = -1.09969 j \\ z_3 = 1.93712 j \\ z_4 = -1.93712 j \\ p_1 = -0.0481 + 1.01142 j \\ p_2 = -0.0481 - 1.01142 j \\ p_3 = -0.44991 + 0.71947 j \\ p_4 = -0.44991 - 0.71947 j \end{array}$$

The analog lowpass transfer function can be written as follows:

$$H_{analog,LPF}(s_L) = 0.922 \frac{\left(\prod_{i=1}^4 p_i\right) \left(\prod_{i=1}^4 (s_L - z_i)\right)}{\left(\prod_{i=1}^4 z_i\right) \left(\prod_{i=1}^4 (s_L - p_i)\right)}$$

The tables given below contains the coefficients for the numerator and denominator of $H_{analog,LPF}(s_L)$.

Figure 7: Poles and Zeroes of the Elliptical Transfer Function

Degree	s_4	s_2	s_0
Coefficient	0.15	0.74426	0.68068

Table 25: Coefficients for the numerator of $H_{analog,LPF}(s_L)$

3.12 Elliptical Analog Bandpass Transfer Function

The transformation between lowpass and bandstop is given by:

$$s_L = \frac{Bs}{s^2 + \Omega_0^2} \\ = \frac{1.156s}{s^2 + 0.7689}$$

After substituting this value into $H_{analog,LPF}(s_L)$, we get $H_{analog,BSF}(s)$. Suppose $H_{analog,BSF}(s)$ is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:

3.13 Elliptical Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the Bilinear transformation:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

After substituting this value into $H_{analog,BPF}(s)$, we get $H_{discrete,BPF}(z)$. Suppose $H_{discrete,BPF}(z)$ is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

Degree	s_4	s_3	s_2	s_1	s_0
Coefficient	1	0.99602	1.8319	0.99184	0.73826

Table 26: Coefficients for the denominator of $H_{analog,LPF}(s_L)$

Degree	s_8	s_6	s_4	s_2	s_0
Coefficient	0.09522	0.36428	0.40159	0.12728	0.01162

Table 27: Coefficients for the numerator (N(s)) of $H_{analog,BPF}(s)$

Degree	s_8	s_7	s_6	s_5
Coefficient	0.10328	0.1604	0.58666	0.49968

Degree	s_4	s_3	s_2	s_1	s_0
Coefficient	0.8712	0.29536	0.20498	0.03313	0.01261

Table 28: Coefficients for the denominator (D(s)) of $H_{analog,BPF}(s)$

	Degree	e	z^0	z^{-1}	z^{-2}	z^{-3}	
	Coeffic	cient	1	-1.61681	3.35166	-3.73352]
Degr	ree	z^{-4}		z^{-5}	z^{-6}	z^{-7}	z^{-8}
Coef	ficient	4.97	327	-3.73352	3.35166	-1.61681	1
		-					

Table 29: Coefficients for the numerator (N(z)) of $H_{discrete,BPF}(z)$

Degree	z^0	z^{-1}	z^{-2}	z^{-3}
Coefficient	2.7673	-3.42438	4.04586	-4.10673

Degree	z^{-4}	z^{-5}	z^{-6}	z^{-7}	z^{-8}
Coefficient	5.42296	-2.99498	1.80734	-1.07983	0.79016

Table 30: Coefficients for the denominator (D(z)) of $H_{discrete,BPF}(z)$

3.14 FIR Filter Parameters

Based on the required filter specifications, we define the following quantities:

$$A = -20 \log_{10} \delta = -20 \log_{10} 0.15 = 16.4782$$

Since A < 21, we take $\alpha = \beta = 0$, and therefore the Kaiser window will be rectangular in shape. The minimum width of the Kaiser window can be calculated using:

$$M \ge 1 + \frac{A - 8}{2.285\Delta\omega_t} = 71.8627$$

where $\Delta \omega_t$ is the transition bandwidth, i.e., $5\pi/300$. We take the next odd integer value, i.e., 73. However, according to simulations, M = 91 is the minimum window width which properly meets specifications.

3.15 FIR Discrete Time Filter

The coefficients for the obtained FIR filter are given as follows:

```
      columns 1 through 18

      0.0000
      0.0138
      0.0041
      -0.009
      0.0050
      -0.0050
      -0.0155
      0.0014
      0.0049
      -0.0017
      0.0125
      0.0025
      -0.0037
      -0.0037
      -0.0008
      -0.0108
      -0.0108
      0.0120
      0.0002
      0.0013
      -0.0019
      -0.0019
      0.0023
      0.0025
      0.0283
      -0.0110
      -0.0081
      0.0000
      -0.0137
      -0.0199
      0.0347
      0.0144
      0.0022

      0.0012
      0.0003
      -0.0195
      -0.0149
      -0.014
      -0.013
      0.215
      -0.0150
      0.0161
      -0.0081
      0.0003
      -0.0149
      -0.0149
      0.0144
      0.0023

      0.0111
      -0.0012
      -0.0149
      -0.0149
      -0.0131
      0.215
      -0.0150
      0.0161
      -0.0151
      0.0121
      -0.0131
      -0.0149
      -0.0149
      -0.0195
      -0.0083

      columns 57
      through 74
      -0.0149
      -0.0199
      -0.0373
      0.0000
      -0.0101
      0.0283
      0.0225
      -0.0080
      0.0012
      -0.0164
      -0.0169
      0.014
      0.0144
      0.0149
      0.0141
      0.0149
      0.0141
      0.0155
      0.0019
      0.0141
```

Figure 8: Coefficients of $H_{discrete,BSF}(z)$

4 Cascading the two filters

4.1 Butterworth Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given as follows:

```
H_{discrete,cascade}(z) = H_{discrete,BPF}(z) \times H_{discrete,BSF}(z)
```

Columns 1 through 17 -0.0000 Columns 18 through 34 -0.0006 0.0013 -0.0012 -0.0010 0.0050 -0.0073 0.0023 0.0119 -0.0268 0.0236 0.0122 -0.0670 0.0918 -0.0318 -0.1104 0.2354 -0.1937 Columns 35 through 51 -0.0772 0.4289 -0.5425 0.1792 0.5280 -1.0397 0.7845 0.2827 -1.4459 1.6712 -0.4960 -1.3829 2.4770 -1.6954 -0.6014 2.6935 -2.8283 Columns 52 through 68 0.7319 2.0371 -3.2965 2.0371 0.7319 -2.8283 2.6935 -0.6014 -1.6954 2.4770 -1.3829 -0.4960 1.6712 -1.4459 0.2827 0.7845 -1.0397 Columns 69 through 85 0.5280 0.1792 -0.5425 0.4289 -0.0772 -0.1937 0.2354 -0.1104 -0.0318 0.0918 -0.0670 0.0122 0.0236 -0.0268 0.0119 0.0023 -0.0073 Columns 86 through 102 0.0050 -0.0010 -0.0012 0.0013 -0.0006 -0.0000 0.0002 -0.0002 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 Columns 103 through 107

0.0000 -0.0000 0.0000 -0.0000 0.0000

1.0e+10 *

Figure 9: Coefficients for the numerator (N(z)) of $H_{discrete, cascade}(z)$

1 0e+16 * Columns 1 through 17 0.0000 -0.0001 -0.0005 0.0020 -0.0061 0.0156 -0.0353 0.0721 -0.1355 0.2371 -0.3899 0.6072 -0.9002 1.2765 -1.7375 2.2771 Columns 18 through 34 -2.8807 3.5253 -4.1810 4.8131 -5.3856 5.8644 -6.2209 6.4346 -6.4951 6.4026 -6.1677 5.8093 -5.3528 4.8274 -4.2626 3.6867 -3.1242 Columns 35 through 51 2.5948 -2.1127 1.6868 -1.3208 1.0145 -0.7645 0.5652 -0.4101 0.2920 -0.2041 0.1400 -0.0943 0.0623 -0.0404 0.0257 -0.0161 0.0099 Columns 52 through 68 -0.0059 0.0035 -0.0020 0.0012 -0.0006 0.0004 -0.0002 0.0001 -0.0001 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 Columns 69 through 85 0,0000 -0,0000 0,0000 -0,0000 0,0000 -0,0000 -0,0000 0,0000 -0,0000 0,0000 -0,0000 -0,0000 -0,0000 0.0000 -0.0000 0.0000 Columns 86 through 102 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 Columns 103 through 107

-0.0000 -0.0000 0.0000 -0.0000 0.0000

Figure 10: Coefficients for the denominator (D(z)) of $H_{discrete, cascade}(z)$

4.2 Chebyshev Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given as follows:

$$H_{discrete,cascade}(z) = H_{discrete,BPF}(z) \times H_{discrete,BSF}(z)$$

Columns 1 through 18

-1.0000 4.1119 -6.3971 -0.6198 25.3058 -53.0785 38.1022 53.1932 -179.4541 202.7299 -8.4281 -319.1459 496.8299 -267.5239 -281.3893 705.5142 -601.0409 0 Columns 19 through 35 601.0409 -705.5142 281.3893 267.5239 -496.8299 319.1459 8.4281 -202.7299 179.4541 -53.1932 -38.1022 53.0785 -25.3058 0.6198 6.3971 -4.1119 1.0000

Figure 11: Coefficients for the numerator (N(z)) of $H_{discrete, cascade}(z)$

1.0e+06 * Columns 1 through 18 0.0290 -0.1550 0.4051 -0.7560 1.2903 -2.1164 3.1020 -4.0656 5.0816 -6.1263 6.8663 -7.1771 7.2450 -7.0450 6.4306 -5.5598 4.6712 -3.7778 Columns 19 through 35 2.8867 -2.1268 1.5480 -1.1042 0.7658 -0.5359 0.3866 -0.2767 0.1927 -0.1346 0.0930 -0.0584 0.0329 -0.0179 0.091 -0.0340 0.0006

Figure 12: Coefficients for the denominator (D(z)) of $H_{discrete, cascade}(z)$

4.3 Elliptical Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given as follows:

$$H_{discrete,cascade}(z) = H_{discrete,BPF}(z) \times H_{discrete,BSF}(z)$$

1.0000 -2.2212 2.3265 -2.3946 3.3767 -3.6637 3.2360 -3.9139 4.8196 -3.9139 3.2360 -3.6637 3.3767 -2.3946 2.3265 -2.2212 1.0000

Figure 13: Coefficients for the numerator (N(z)) of $H_{discrete, cascade}(z)$

7.6580 -18.1035 20.3297 -24.0754 40.3011 -45.9150 37.2601 -37.0526 41.2740 -30.2627 17.9183 -14.7576 11.2734 -4.7200 1.9443 -1.4456 0.6243

Figure 14: Coefficients for the denominator (D(z)) of $H_{discrete, cascade}(z)$

4.4 FIR Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given as follows:

```
H_{discrete,cascade}(z) = H_{discrete,BPF}(z) \times H_{discrete,BSF}(z)
```

Columns 1 through 18 0.0000 0.0000 0.0002 0.0001 0.0000 0.0002 -0.0001 -0.0003 -0.0000 -0.0003 -0.0002 0.0002 0.0000 0.0001 0.0002 0.0000 -0.0000 -0.0000 Columns 19 through 36 0.0002 0.0002 0.0000 0.0004 -0.0001 -0.0005 -0.0000 -0.0005 -0.0005 0.0003 0.0000 0.0001 0.0005 0.0001 -0.0000 0.0000 0.0003 0.0004 Columns 37 through 54 0.0001 0.0010 0.0010 -0.0016 -0.0002 -0.0020 -0.0033 0.0013 0.0001 0.0004 0.0217 0.0073 0.0000 0.0145 -0.0135 -0.0165 -0.0001 -0.0119 Columns 55 through 72 -0.0036 0.0034 0.0001 -0.0032 -0.0138 0.0033 0.0000 -0.0052 0.0372 0.0188 -0.0000 0.0307 -0.0155 -0.0341 -0.0000 -0.0266 -0.0160 0.0119 Columns 73 through 90 0.0000 -0.0004 -0.0157 0.0000 0.0000 -0.0193 0.0691 0.0547 -0.0000 0.0946 -0.0165 -0.1225 -0.0000 -0.1237 -0.1426 0.0922 0.0000 0.0342 Columns 91 through 108 0.2336 0.0342 0.0000 0.0922 -0.1426 -0.1237 -0.0000 -0.1225 -0.0165 0.0946 -0.0000 0.0547 0.0691 -0.0193 0.0000 0.0000 -0.0157 -0.0004 Columns 109 through 126 0.0000 0.0119 -0.0160 -0.0266 -0.0000 -0.0341 -0.0155 0.0307 -0.0000 0.0188 0.0372 -0.0052 0.0000 0.0033 -0.0138 -0.0032 0.0001 0.0034 Columns 127 through 144 -0.0036 -0.0119 -0.0001 -0.0165 -0.0135 0.0145 0.0000 0.0073 0.0217 0.0004 0.0001 0.0013 -0.0033 -0.0020 -0.0002 -0.0016 0.0001 0.0010 Columns 145 through 162 0.0001 0.0004 0.0003 0.0000 -0.0000 0.0001 0.0005 0.0001 0.0000 0.0003 -0.0005 -0.0005 -0.0000 -0.0005 -0.0001 0.0004 0.0000 0.0002 Columns 163 through 180 0.0002 -0.0000 -0.0000 0.0000 0.0002 0.0001 0.0000 0.0002 -0.0003 -0.0000 -0.0003 -0.0001 0.0002 0.0000 0.0001 0.0002 0.0000 Column 181 0.0000

Figure 15: Coefficients of $H_{discrete.cascade}(z)$

5 MATLAB Simulations

5.1 Acknowledgement

The report format and the MATLAB codes are inspired by the Ashwin Bhat's previous year submission (available on MSTeams Class Resources).

5.2 Butterworth Bandpass Filter

Figure 16: Lowpass Analog Filter Response for the Bandpass Filter

Figure 17: Magnitude Response for the Bandpass Analog Filter

Figure 18: Phase Response for the Bandpass Analog Filter

Frequency (in kHz)

Figure 19: Bandpass Discrete-time Filter Response

5.3 Butterworth Bandstop Filter

Figure 20: Lowpass Analog Filter Response for the Bandstop Filter

Figure 21: Magnitude Response for the Bandstop Filter

Figure 22: Phase Response for the Bandstop Filter

Figure 23: Bandstop Discrete-time Filter Response

5.4 Butterworth Cascaded filter

Figure 24: Cascade Discrete-time Filter Magnitude Response

Figure 25: Cascade Discrete-time Filter Filter Response

5.5 Chebyshev Bandpass Filter

Figure 26: Lowpass Analog Filter Response for the Bandpass Filter

Figure 27: Magnitude Response for the Bandpass Analog Filter

Figure 28: Phase Response for the Bandpass Analog Filter

Figure 29: Bandpass Discrete-time Filter Response

5.6 Chebyshev Bandstop Filter

Figure 30: Lowpass Analog Filter Response for the Bandstop Filter

Figure 31: Magnitude Response for the Bandstop Filter

Figure 32: Phase Response for the Bandstop Filter

Figure 33: Bandstop Discrete-time Filter Response

5.7 Chebyshev Cascaded filter

Figure 34: Cascade Discrete-time Filter Magnitude Response

Figure 35: Cascade Discrete-time Filter Filter Response

5.8 Elliptical Bandpass Filter

Figure 36: Lowpass Analog Filter Response for the Bandpass Filter

Figure 37: Magnitude Response for the Bandpass Analog Filter

Figure 38: Phase Response for the Bandpass Analog Filter

Figure 39: Bandpass Discrete-time Filter Response

5.9 Elliptical Bandstop Filter

Figure 40: Lowpass Analog Filter Response for the Bandstop Filter

Figure 41: Magnitude Response for the Bandstop Filter

Figure 42: Phase Response for the Bandstop Filter

Figure 43: Bandstop Discrete-time Filter Response

Figure 44: Cascade Discrete-time Filter Magnitude Response

Figure 45: Cascade Discrete-time Filter Filter Response

Figure 46: Bandpass Discrete-time Filter Response

Figure 47: Bandpass Discrete-time Filter Response

Figure 48: Bandpass Discrete-time Impulse Response

Figure 49: Bandstop Discrete-time Filter Response

Figure 50: Bandstop Discrete-time Filter Response

Figure 51: Bandstop Discrete-time Impulse Response

Figure 52: Cascade Discrete-time Filter Magnitude Response

Figure 53: Cascade Discrete-time Filter Filter Response

Figure 54: Cascade Discrete-time Impulse Response

6 Comparing the different filter types

- **Passband and stopband:** Butterworth filter has a monotonic response in both passband and stopband. Chebyshev filter has a monotonic stopband and an oscillatory passband response. Elliptical filters have an oscillatory response in both the passband and the stopband.
- **Transition Band:** Elliptical filter has the sharpest transition band. This reduces in the case of the Chebyshev filter and the Butterworth filter, and the FIR filter has the slowest passband to stopband transition.
- Filter Order: For the same specifications, elliptical filter has the smallest order (4), followed by Chebyshev (9), Butterworth (28), and FIR has the highest order (91).
- **Phase Response:** The FIR filters gives a perfectly linear phase response. Butterworth filter has an almost linear phase response. Chebyshev filter has a more non-linear phase response than Butterworth and the Elliptical filter has an even more non-linearity in its phase response.

7 Peer Reviews

7.1 Arya Vishe - 20d070018

I have thoroughly reviewed the filter design report of Arya Vishe, 20d070018 and have found it to be correct. The filters were designed with proper steps, starting from the unnormalized specifications to the final discrete-time filter magnitude response. Sufficient simulation results and plots were provided for both the magnitude and phase response of the bandpass, bandstop, and multi-band filters.

7.2 Rajput Nikhileshsing Kailassing - 200070067

I have thoroughly reviewed the filter design report of **Rajput Nikhileshsing Kailassing**, **200070067** and have found it to be correct. The filters were designed with proper steps, starting from the un-normalized specifications to the final discrete-time filter magnitude response. Sufficient simulation results and plots were provided for both the magnitude and phase response of the bandpass, bandstop, and multi-band filters.