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1 Student Details

Name : Anubhav Bhatla
Roll Number : 200070008
Filter Number : 4
Method used : Cascade of bandpass and bandstop filters

Filter Number = 4 = 11Q + R
Therefore, Q = 0; R = 4
Frequency Band Group-I : 40 to 70 kHz
Frequency Band Group-II : 190 to 220 kHz

2 Bandpass Filter Details

2.1 Un-normalized Discrete-time Filter Specifications

Given below are the filter specifications for the required bandpass filter:

• Passband : 40 - 220 kHz

• Stopband : 0 - 35 kHz and 225 - 300 kHz

• Transition band : 5 kHz on either sides of the passband

• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic

2.2 Normalized Digital Filter Specifications

Sampling Rate = 600 kHz corresponds to 2π on the normalized frequency axis.

fs → 2π
ω = 2π × f/fs

Therefore the normalized discrete filter specifications are as follows:

• Passband : 40π/300 - 220π/300

• Stopband : 0 - 35π/300 and 225π/300 - π

• Transition band : 5π/300 on either sides of the passband

• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic
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2.3 Analog Filter Specifications

The bilinear transformation is given as:

Ω = tan(ω/2)

Therefore the corresponding analog filter specifications are as follows:

• Passband : 0.2126 (Ωp1) - 2.246 (Ωp2)

• Stopband : 0 - 0.1853 (Ωs1) and 2.4142 (Ωs2) - ∞

• Transition band : 0.1853 - 0.2126 and 2.246 - 2.4142

• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic

2.4 Frequency-transformed Lowpass Analog Filter

The bandpass transformation is given as follows:

ΩL =
Ω2 − Ω2

0

BΩ

where
Ω0 =

√
Ωp1Ωp2 = 0.691

B = Ωp2 − Ωp1 = 2.0334

The lowpass transformations for various key points are given below:

Ω ΩL

0+ -∞
0.1853 (Ωs1) -1.1761 (ΩLs1

)

0.2126 (Ωp1) -1 (ΩLp1
)

0.691 (Ω0) 0

2.246 (Ωp2) 1 (ΩLp2
)

2.4142 (Ωs2) 1.09 (ΩLs2
)

Therefore the corresponding lowpass analog filter specifications are as follows:

• Passband Edge : 1 (ΩLp)

• Stopband Edge : min(|ΩLs1
|, |ΩLs2

|) = 1.09 (ΩLs)

• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic
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2.5 Butterworth Analog Lowpass Transfer Function

Based on the tolerance in the passband and the stopband (both equal to δ), we define two
new quantities:

D1 =
1

(1− δ)2
− 1 =

1

0.852
− 1 = 0.3841

D2 =
1

δ2
− 1 =

1

0.152
− 1 = 43.4444

Using these newly defined quantities, the minimum order for the Butterworth filter is given
as:

Nmin = ⌈ log(D2/D1)

2log(ΩLs/ΩLp)
⌉ = ⌈27.4532⌉ = 28

The cutoff frequency (Ωc) of the analog lowpass analog filter has the following constraint:

ΩLp

D
1/2N
1

≤ Ωc ≤
ΩLs

D
1/2N
2

1.0172 ≤ Ωc ≤ 1.019

We can choose the value of Ωc to be 1.018. Solutions to the following equation gives us the
poles of the transfer function:

1 +

(
sL
jΩc

)2N

= 1 +

(
sL

j1.018

)56

= 0

Figure 1: Poles of the Butterworth Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

p1 = −1.0164− 0.0570797j

p2 = −1.0164 + 0.0570797j

p3 = −1.00362− 0.170521j

p4 = −1.00362 + 0.170521j

p5 = −0.978214− 0.281819j
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p6 = −0.978214 + 0.281819j

p7 = −0.940509− 0.389572j

p8 = −0.940509 + 0.389572j

p9 = −0.890977 + 0.492426j

p10 = −0.890977− 0.492426j

p11 = −0.830241− 0.589087j

p12 = −0.830241 + 0.589087j

p13 = −0.759064− 0.678341j

p14 = −0.759064 + 0.678341j

p15 = −0.678341− 0.759064j

p16 = −0.678341 + 0.759064j

p17 = −0.589087− 0.830241j

p18 = −0.589087 + 0.830241j

p19 = −0.492426− 0.890977j

p20 = −0.492426 + 0.890977j

p21 = −0.389572− 0.940509j

p22 = −0.389572 + 0.940509j

p23 = −0.281819− 0.978214j

p24 = −0.281819 + 0.978214j

p25 = −0.170521− 1.00362j

p26 = −0.170521 + 1.00362j

p27 = −0.0570797 + 1.0164j

p28 = −0.0570797− 1.0164j

The analog lowpass transfer function can be written as follows:

Hanalog,LPF (sL) =
ΩN
c∏28

i=1(sL − pi)

The table given below contains the coefficients for the denominator of Hanalog,LPF (sL).

Degree s28 s27 s26 s25 s24 s23 s22

Coefficient 1 18.1557 164.815 995.348 4489.23 16094.2 47667.5

Degree s21 s20 s19 s18 s17 s16 s15

Coefficient 119687 259441 491930 823820 1227130 1634050 1951758

Degree s14 s13 s12 s11 s10 s9 s8

Coefficient 2095170 2022654 1754916 1365769 950200 588005 321375

Degree s7 s6 s5 s4 s3 s2 s1 s0

Coefficient 153645 63414.3 22188.6 6413.97 1473.75 252.897 28.8706 1.64792

Table 1: Coefficients for the denominator of Hanalog,LPF (sL)
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2.6 Butterworth Analog Bandpass Transfer Function

The transformation between lowpass and bandpass is given by:

sL =
s2 +Ω2

0

Bs

=
s2 + 0.4775

2.0334s

After substituting this value intoHanalog,LPF (sL), we getHanalog,BPF (s). SupposeHanalog,BPF (s)
is represented as N(s)/D(s), we have N(s) = s28 and D(s) has the following coefficients:

Degree s56 s55 s54 s53 s52 s51 s50

Coefficient 1.42e-09 5.24e-08 9.87e-07 1.25e-05 0.00012 0.00094 0.006113

Degree s49 s48 s47 s46 s45 s44 s43

Coefficient 0.03402 0.16527 0.70981 2.72202 9.39029 29.3080 83.1204

Degree s42 s41 s40 s39 s38 s37 s36

Coefficient 214.914 507.803 1098.28 2176.49 3953.82 6583.80 10044.5

Degree s35 s34 s33 s32 s31 s30 s29

Coefficient 14028.7 17916.1 20893.9 22217.7 21509.6 18933.1 15134.9

Degree s28 s27 s26 s25 s24 s23 s22

Coefficient 10979.7 7226.67 4316.53 2341.54 1154.84 518.561 212.315

Degree s21 s20 s19 s18 s17 s16 s15

Coefficient 79.3800 27.1381 8.49340 2.43544 0.64013 0.15423 0.03405

Degree s14 s13 s12 s11 s10 s9 s8

Coefficient 0.00688 0.00127 0.00021 3.27e-05 4.53e-06 5.64e-07 6.27e-08

Degree s7 s6 s5 s4 s3 s2 s1

Coefficient 6.16e-09 5.28e-10 3.88e-11 2.39e-12 1.18e-13 4.44e-15 1.12e-16

Degree s0

Coefficient 1.45e-18

Table 2: Coefficients for the denominator (D(s)) of Hanalog,BPF (s)

2.7 Butterworth Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the
Bilinear transformation:

s =
1− z−1

1 + z−1

After substituting this value intoHanalog,BPF (s), we getHdiscrete,BPF (z). SupposeHdiscrete,BPF (z)
is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:
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Degree z0 z−2 z−4 z−6 z−8 z−10 z−12 z−14

Coefficient 1 -28 378 -3276 20475 -98280 376740 -1184040

Degree z−16 z−18 z−20 z−22 z−24 z−26 z−28

Coefficient 3108105 -6906900 13123110 -21474180 30421755 -37442160 40116600

Degree z−30 z−32 z−34 z−36 z−38 z−40 z−42

Coefficient -37442160 30421755 -21474180 13123110 -6906900 3108105 -1184040

Degree z−44 z−46 z−48 z−50 z−52 z−54 z−56

Coefficient 376740 -98280 20475 -3276 378 -28 1

Table 3: Coefficients for the denominator (N(z)) of Hdiscrete,BPF (z)

Degree z0 z−1 z−2 z−3 z−4 z−5 z−6

Coefficient 182207 -1424275 4372394 -5912085 1825030 400202 11697284

Degree z−7 z−8 z−9 z−10 z−11 z−12 z−13

Coefficient -22430163 4386676 14608762 12067660 -40040974 4269092 31941509

Degree z−14 z−15 z−16 z−17 z−18 z−19 z−20

Coefficient 7578927 -43163451 18035 33093507 5676867 -29541681 -3669619

Degree z−21 z−22 z−23 z−24 z−25 z−26 z−27

Coefficient 19501109 4634754 -12730726 -3346987 6816399 2442148 -3349430

Degree z−28 z−29 z−30 z−31 z−32 z−33 z−34

Coefficient -1412880 1392809 732270 -507923 -321754 154836 123016

Degree z−35 z−36 z−37 z−38 z−39 z−40 z−41

Coefficient -38936.6 -40211.4 7421.72 11230.6 -848.321 -2642.17 -49.0077

Degree z−42 z−43 z−44 z−45 z−46 z−47 z−48

Coefficient 516.007 53.2993 -81.5897 -15.1022 10.0542 2.74369 -0.90113

Degree z−49 z−50 z−51 z−52 z−53 z−54 z−55

Coefficient -0.34903 0.05003 0.03049 -0.00071 -0.00166 -0.00010 4.29e-05

Degree z−56

Coefficient 5.48e-06

Table 4: Coefficients for the denominator (D(z)) of Hdiscrete,BPF (z)
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2.8 Chebyshev Analog Lowpass Transfer Function

Based on the tolerance in the passband (δp) and the stopband (δs), we define the following
quantities:

D1 =
1

(1− δp)2
− 1 =

1

0.9222
− 1 = 0.1765

D2 =
1

δ2s
− 1 =

1

0.152
− 1 = 43.4444

Using these newly defined quantities, the minimum order for the Chebyshev filter is given as:

Nmin = ⌈
cosh−1(

√
D2/D1)

cosh−1(ΩLs/ΩLp)
⌉ = ⌈8.1803⌉ = 9

Solutions to the following equation gives us the poles of the transfer function:

1 +D1cosh
2

(
Ncosh−1

(
sL

jΩLp

))
= 1 + 0.1765cosh2

(
9cosh−1

(
sL
j

))
= 0

Figure 2: Poles of the Chebyshev Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

p1 = −0.03107− 1.00045j
p2 = −0.03107 + 1.00045j
p3 = −0.08946− 0.87978j
p4 = −0.08946 + 0.87978j
p5 = −0.13706− 0.65300j
p6 = −0.13706 + 0.65300j
p7 = −0.16813− 0.34745j
p8 = −0.16813 + 0.34745j

p9 = −0.17892

The analog lowpass transfer function can be written as follows:

Hanalog,LPF (sL) =

∏9
i=1 pi∏9

i=1(sL − pi)
=

−0.0093∏9
i=1(sL − pi)

The table given below contains the coefficients for the denominator of Hanalog,LPF (sL).
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Degree s9 s8 s7 s6 s5

Coefficient 1 1.03037 2.78083 2.14978 2.56730

Degree s3 s3 s2 s1 s0

Coefficient 1.39820 0.87781 0.28968 0.08138 0.009298

Table 5: Coefficients for the denominator of Hanalog,LPF (sL)

2.9 Chebyshev Analog Bandpass Transfer Function

The transformation between lowpass and bandpass is given by:

sL =
s2 +Ω2

0

Bs

=
s2 + 0.4775

2.0334s

After substituting this value intoHanalog,LPF (sL), we getHanalog,BPF (s). SupposeHanalog,BPF (s)
is represented as N(s)/D(s), we have N(s) = s9 and D(s) has the following coefficients:

Degree s18 s17 s16 s15 s14 s13

Coefficient -0.18091 -0.37904 -2.85751 -4.71780 -16.3774 -20.5808

Degree s12 s11 s10 s9 s8 s7

Coefficient -41.7941 -37.8187 -47.5911 -28.7158 -22.7205 -8.61965

Degree s6 s5 s4 s3 s2 s1 s0

Coefficient -4.54767 -1.06912 -0.40616 -0.05586 -0.01615 -0.00102 -0.00023

Table 6: Coefficients for the denominator (D(s)) of Hanalog,BPF (s)

2.10 Chebyshev Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the
Bilinear transformation:

s =
1− z−1

1 + z−1

After substituting this value intoHanalog,BPF (s), we getHdiscrete,BPF (z). SupposeHdiscrete,BPF (z)
is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

Degree z0 z−2 z−4 z−6 z−8 z−10 z−12 z−14 z−16 z−18

Coefficient -1 9 -36 84 -126 126 -84 36 -9 1

Table 7: Coefficients for the denominator (N(z)) of Hdiscrete,BPF (z)
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Degree z0 z−1 z−2 z−3 z−4 z−5 z−6

Coefficient 238.450 -810.845 1435.53 -2060.80 3024.83 -4071.51 4775.51

Degree z−7 z−8 z−9 z−10 z−11 z−12 z−13

Coefficient -5147.73 5309.76 -5081.28 4488.49 -3681.63 2821.27 -1975.18

Degree z−14 z−15 z−16 z−17 z−18

Coefficient 1256.41 -711.104 357.456 -141.082 34.5338

Table 8: Coefficients for the denominator (D(z)) of Hdiscrete,BPF (z)
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2.11 Elliptical Analog Lowpass Transfer Function

2.11.1 Jacobian Elliptical Integrals

The elliptical function ω = sn(z, k) can be defined using the elliptical integral:

z =

∫ ϕ

0

dθ√
1− k2sin2θ

Using a change of variables, we get

z =

∫ ω

0

dt√
(1− k2t2)(1− t2)

where ω = sin(ϕ(z, k)) and k is called the elliptic modulus with 0 ≤ k ≤ 1.
The three elliptical functions cn, dn, and cd are defined as follows:

ω = cn(z, k) = cosϕ(z, k)

ω = dn(z, k) =
d

dz
ϕ(z, k)

ω = cd(z, k) =
cnϕ(z, k)

dnϕ(z, k)

The complete elliptical integral is defined as the value of z at ϕ = π/2

K(k) =

∫ π/2

0

dθ√
1− k2sin2θ

at ϕ = π/2, the elliptical functions are defined as

sn(K, k) = 1 & cd(K, k) = 0

The complementary elliptical modulus k′ =
√
1− k2 can also be used to define the complete

elliptical integral

K(k′) =

∫ π/2

0

dθ√
1− k′2sin2θ

2.11.2 Elliptical Filter Parameters

Based on the tolerance in the passband (δp) and the stopband (δs), we define the following
quantities:

D1 =

√
1

(1− δp)2
− 1 =

√
1

(0.922)2
− 1 = 0.42

D2 =

√
1

(δs)2
− 1 =

√
1

(0.15)2
− 1 = 6.591

k1 =
D1

D2
=

0.42

6.591
= 0.0637

k′1 =
√
1− k21 = 0.998

k =
ΩLp

ΩLs

=
1

1.09
= 0.9174
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k′ =
√
1− k2 = 0.398

Using these newly defined quantities, the minimum order for the Elliptical filter is given as:

Nmin = ⌈K(k)×K(k′1)

K(k′)×K(k1)
⌉

where

K(k) =

∫ π/2

0

dθ√
1− k2sin2θ

The required elliptical integral values can be calculated using MATLAB:

K(k) = 2.3641 K(k′1) = 4.1429 K(k′) = 1.6392 K(k1) = 1.5724

Nmin = ⌈3.8⌉ = 4

2.11.3 Poles and Zeroes

We define L and r as follows:

L = ⌊N
2
⌋ & r = mod(N, 2)

ui =
2i− 1

N
i = 1, 2....L

ζi = cd(ui, k)

The zeroes of the transfer function Hanalog,LPF (sL) are given as follows:

zi = jΩi =
j

k · ζi
i = 1, 2....L

We define ν0 as follows:

ν0 = − j

N
sn−1(

j

D1
, k1)

The poles of the transfer function Hanalog,LPF (sL) are given as follows:

pi = j · cd((ui − jν0), k) i = 1, 2....L

Since N is odd, there is an additional pole given by

p0 = j · cd((1− jν0), k) = j · sn(jν0, k)

The poles and zeroes are given as follows:

z1 = 1.09969j
z2 = −1.09969j
z3 = 1.93712j
z4 = −1.93712j

p1 = −0.0481 + 1.01142j
p2 = −0.0481− 1.01142j
p3 = −0.44991 + 0.71947j
p4 = −0.44991− 0.71947j

The analog lowpass transfer function can be written as follows:

Hanalog,LPF (sL) = 0.922

(∏4
i=1 pi

)(∏4
i=1(sL − zi)

)
(∏4

i=1 zi

)(∏4
i=1(sL − pi)

)
The tables given below contains the coefficients for the numerator and denominator ofHanalog,LPF (sL).
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Figure 3: Poles and Zeroes of the Elliptical Transfer Function

Degree s4 s2 s0

Coefficient 0.15 0.74426 0.68068

Table 9: Coefficients for the numerator of Hanalog,LPF (sL)

2.12 Elliptical Analog Bandpass Transfer Function

The transformation between lowpass and bandpass is given by:

sL =
s2 +Ω2

0

Bs

=
s2 + 0.4775

2.0334s

After substituting this value intoHanalog,LPF (sL), we getHanalog,BPF (s). SupposeHanalog,BPF (s)
is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:

2.13 Elliptical Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the
Bilinear transformation:

s =
1− z−1

1 + z−1

After substituting this value intoHanalog,BPF (s), we getHdiscrete,BPF (z). SupposeHdiscrete,BPF (z)
is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

15



Degree s4 s3 s2 s1 s0

Coefficient 1 0.99602 1.8319 0.99184 0.73826

Table 10: Coefficients for the denominator of Hanalog,LPF (sL)

Degree s8 s6 s4 s2 s0

Coefficient 0.00787 0.1764 0.77513 0.0402 0.00041

Table 11: Coefficients for the numerator (N(s)) of Hanalog,BPF (s)

Degree s8 s7 s6 s5

Coefficient 0.05244 0.1062 0.49734 0.58942

Degree s4 s3 s2 s1 s0

Coefficient 1.11288 0.28139 0.11335 0.01156 0.00272

Table 12: Coefficients for the denominator (D(s)) of Hanalog,BPF (s)

Degree z0 z−1 z−2 z−3

Coefficient 1 -0.60442 -2.00243 0.12718

Degree z−4 z−5 z−6 z−7 z−8

Coefficient 3.06394 0.12718 -2.00243 -0.60442 1

Table 13: Coefficients for the numerator (N(z)) of Hdiscrete,BPF (z)

Degree z0 z−1 z−2 z−3

Coefficient 2.76731 -3.11756 -0.55727 -0.72486

Degree z−4 z−5 z−6 z−7 z−8

Coefficient 4.43159 -1.77104 -0.37123 -0.74971 0.79016

Table 14: Coefficients for the denominator (D(z)) of Hdiscrete,BPF (z)
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2.14 FIR Filter Parameters

Based on the required filter specifications, we define the following quantities:

A = −20 log10 δ = −20 log10 0.15 = 16.4782

Since A < 21, we take α = β = 0, and therefore the Kaiser window will be rectangular in
shape. The minimum width of the Kaiser window can be calculated using:

M ≥ 1 +
A− 8

2.285∆ωt
= 71.8627

where ∆ωt is the transition bandwidth, i.e., 5π/300. We take the next odd integer value, i.e.,
73. However, according to simulations, M = 91 is the minimum window width which properly
meets specifications.

2.15 FIR Discrete Time Filter

The coefficients for the obtained FIR filter are given as follows:

Figure 4: Coefficients of Hdiscrete,BPF (z)
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3 Bandstop Filter Details

3.1 Un-normalized Discrete-time Filter Specifications

Given below are the filter specifications for the required bandpass filter:

• Stopband : 75 - 185 kHz

• Passband : 0 - 70 kHz and 190 - 300 kHz

• Transition band : 5 kHz on either sides of the stopband

• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic

3.2 Normalized Digital Filter Specifications

Sampling Rate = 600 kHz corresponds to 2π on the normalized frequency axis.

fs → 2π

ω = 2π × f/fs

Therefore the normalized discrete filter specifications are as follows:

• Stopband : 75π/300 - 185π/300

• Passband : 0 - 70π/300 and 190π/300 - π

• Transition band : 5π/300 on either sides of the stopband

• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic

3.3 Analog Filter Specifications

The bilinear transformation is given as:

Ω = tan(ω/2)

Therefore the corresponding analog filter specifications are as follows:

• Stopband : 0.4142 (Ωs1) - 1.455 (Ωs2)

• Passband : 0 - 0.3839 (Ωp1) and 1.5399 (Ωp2) - ∞

• Transition band : 0.3839 - 0.4142 and 1.455 - 1.5399
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• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic

3.4 Frequency-transformed Lowpass Analog Filter

The bandpass transformation is given as follows:

ΩL =
BΩ

Ω2
0 − Ω2

where
Ω0 =

√
Ωp1Ωp2 = 0.7689

B = Ωp2 − Ωp1 = 1.156

The lowpass transformations for various key points are given below:

Ω ΩL

0+ -0+

0.3839 (Ωp1) 1 (ΩLp1
)

0.4142 (Ωs1) 1.1411 (ΩLs1
)

0.7689− (Ω−
0 ) ∞

0.7689+ (Ω+
0 ) −∞

1.455 (Ωs2) -1.1024 (ΩLs2
)

1.5399 (Ωp2) -1 (ΩLp2
)

Therefore the corresponding lowpass analog filter specifications are as follows:

• Passband Edge : 1 (ΩLp)

• Stopband Edge : min(|ΩLs1
|, |ΩLs2

|) = 1.1024 (ΩLs)

• Tolerance : 0.15 in magnitude for both oscillatory and monotonic stopband.
0.078 for oscillatory passband and 0.15 for a monotonic passband. This difference is
because in case of an oscillatory passband, after cascading the effective tolerance will
be (1− δp)

2 > 0.85. Therefore, δp < 0.078.

• Passband nature : Monotonic

• Stopband nature : Monotonic

3.5 Butterworth Analog Lowpass Transfer Function

Based on the tolerance in the passband and the stopband (both equal to δ), we define two
new quantities:

D1 =
1

(1− δ)2
− 1 =

1

0.852
− 1 = 0.3841
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D2 =
1

δ2
− 1 =

1

0.152
− 1 = 43.4444

Using these newly defined quantities, the minimum order for the Butterworth filter is given
as:

Nmin = ⌈ log(D2/D1)

2log(ΩLs/ΩLp)
⌉ = ⌈24.2501⌉ = 25

The cutoff frequency (Ωc) of the analog lowpass analog filter has the following constraint:

ΩLp

D
1/2N
1

≤ Ωc ≤
ΩLs

D
1/2N
2

1.0193 ≤ Ωc ≤ 1.0269

We can choose the value of Ωc to be 1.02. Solutions to the following equation gives us the
poles of the transfer function:

1 +

(
sL
jΩc

)2N

= 1 +

(
sL

j1.02

)50

= 0

Figure 5: Poles of the Butterworth Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

p1 = −1.02

p2 = −1.01196− 0.12784j

p3 = −1.01196 + 0.12784j

p4 = −0.987955− 0.253664j

p5 = −0.987955 + 0.253664j

p6 = −0.948372− 0.375487j

p7 = −0.948372 + 0.375487j

p8 = −0.893833− 0.491389j

p9 = −0.893833 + 0.491389j

p10 = −0.825197− 0.599541j

20



p11 = −0.825197 + 0.599541j

p12 = −0.743548− 0.698238j

p13 = −0.743548 + 0.698238j

p14 = −0.650172− 0.785924j

p15 = −0.650172 + 0.785924j

p16 = −0.546543− 0.861214j

p17 = −0.546543 + 0.861214j

p18 = −0.434295− 0.922924j

p19 = −0.434295 + 0.922924j

p20 = −0.315197− 0.970078j

p21 = −0.315197 + 0.970078j

p22 = −0.191129− 1.00193j

p23 = −0.191129 + 1.00193j

p24 = −0.0640463− 1.01799j

p25 = −0.0640463 + 1.01799j

The analog lowpass transfer function can be written as follows:

Hanalog,LPF (sL) =
ΩN
c∏25

i=1(sL − pi)

The table given below contains the coefficients for the denominator of Hanalog,LPF (sL).

Degree s25 s24 s23 s22 s21 s20 s19

Coefficient 1 16.2444 131.941 712.554 2870.77 9178.10 24186.0

Degree s18 s17 s16 s15 s14 s13 s12

Coefficient 53871.5 103204 172159 252246 326553 374913 382411

Degree s11 s10 s9 s8 s7 s6 s5

Coefficient 346540 278500 197757 123339 66982.4 31287.2 12352.5

Degree s4 s3 s2 s1 s0

Coefficient 4019.77 1038.05 199.979 25.6159 1.64060

Table 15: Coefficients for the denominator of Hanalog,LPF (sL)

3.6 Butterworth Analog Bandstop Transfer Function

The transformation between lowpass and bandstop is given by:

sL =
Bs

s2 +Ω2
0

=
1.156s

s2 + 0.7689

After substituting this value intoHanalog,LPF (sL), we getHanalog,BSF (s). SupposeHanalog,BSF (s)
is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:
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Degree s50 s48 s46 s44 s42 s40 s38

Coefficient 9.06925 0.00013 0.00095 0.00430 0.01400 0.03477 0.06850

Degree s36 s34 s32 s30 s28 s26 s24

Coefficient 0.10991 0.14618 0.16322 0.15436 0.12442 0.08580 0.05072

Degree s22 s20 s18 s16 s14 s12 s10

Coefficient 0.02569 0.01113 0.00411 0.00128 0.00033 7.36e-05 1.30e-05

Degree s8 s6 s4 s2 s0

Coefficient 1.83e-06 1.97e-07 1.52e-08 7.50e-10 1.77e-11

Table 16: Coefficients for the numerator (N(s)) of Hanalog,BSF (s)

3.7 Butterworth Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the
Bilinear transformation:

s =
1− z−1

1 + z−1

After substituting this value intoHanalog,BSF (s), we getHdiscrete,BSF (z). SupposeHdiscrete,BSF (z)
is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:
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Degree s50 s49 s48 s47 s46 s45 s44

Coefficient 9.06e-06 0.00016 0.00161 0.01118 0.06071 0.27202 1.04022

Degree s43 s42 s41 s40 s39 s38 s37

Coefficient 3.47189 10.2758 27.2885 65.6029 143.767 288.785 534.032

Degree s36 s35 s34 s33 s32 s31 s30

Coefficient 912.365 1444.17 2122.87 2903.31 3699.87 4398.73 4883.52

Degree s29 s28 s27 s26 s25 s24 s23

Coefficient 5066.74 4915.43 4460.82 3788.00 3010.38 2239.08 1558.60

Degree s22 s21 s20 s19 s18 s17 s16

Coefficient 1015.17 618.541 352.398 187.623 93.2840 43.2687 18.7009

Degree s15 s14 s13 s12 s11 s10 s9

Coefficient 7.52004 2.80821 0.97160 0.31056 0.09139 0.02465 0.00606

Degree s8 s7 s6 s5 s4 s3 s2

Coefficient 0.00134 0.00026 4.77e-05 7.37e-06 9.73e-07 1.05e-07 9.02e-09

Degree s1 s0

Coefficient 5.41e-10 1.77e-11

Table 17: Coefficients for the denominator (D(s)) of Hanalog,BSF (s)
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Degree z0 z−1 z−2 z−3 z−4 z−5 z−6

Coefficient 1 -12.8496 104.254 -620.698 3005.72 -12323.1 44156.9

Degree z−7 z−8 z−9 z−10 z−11 z−12 z−13

Coefficient -140823 405721 -1066723 2581279 -5785163 12073338 -23561016

Degree z−14 z−15 z−16 z−17 z−18 z−19

Coefficient 43150517 -74381598 120983099 -186059322 271026690 -374478160

Degree z−20 z−21 z−22 z−23 z−24 z−25

Coefficient 491385660 -612935697 727351418 -821594803 883767338 -905492148

Degree z−26 z−27 z−28 z−29 z−30 z−31

Coefficient 883767338 -821594803 727351418 -612935697 491385660 -374478160

Degree z−32 z−33 z−34 z−35 z−36 z−37

Coefficient 271026690 -186059322 120983099 -74381598 43150517 -23561016

Degree z−38 z−39 z−40 z−41 z−42 z−43 z−44

Coefficient 12073338 -5785163 2581279 -1066723 405721 -140823 44156.9

Degree z−45 z−46 z−47 z−48 z−49 z−50

Coefficient -12323.1 3005.72 -620.698 104.254 -12.8496 1

Table 18: Coefficients for the numerator (N(z)) of Hdiscrete,BSF (z)
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Degree z0 z−1 z−2 z−3 z−4 z−5 z−6

Coefficient 48819.2 -380094 1688980 -5472779 14384359 -32328276 64159832

Degree z−7 z−8 z−9 z−10 z−11 z−12

Coefficient -114750228 187637343 -283439139 398669067 -525292603 651505460

Degree z−13 z−14 z−15 z−16 z−17 z−18

Coefficient -763524799 848149351 -895284994 899899328 -862787039 790118905

Degree z−19 z−20 z−21 z−22 z−23 z−24

Coefficient -691896295 579873208 -465435054 357958520 -263869984 186466566

Degree z−25 z−26 z−27 z−28 z−29 z−30

Coefficient -126318233 82020803 -51032367 30411634 -17347734 9465060

Degree z−31 z−32 z−33 z−34 z−35 z−36 z−37

Coefficient -4934781 2455742 -1164858 525828 -225459 91618.2 -35191.4

Degree z−38 z−39 z−40 z−41 z−42 z−43 z−44

Coefficient 12737.8 -4328.44 1374.78 -405.909 110.677 -27.6316 6.25019

Degree z−45 z−46 z−47 z−48 z−49 z−50

Coefficient -1.26198 0.22316 -0.03349 0.00408 -0.00036 2.04e-05

Table 19: Coefficients for the denominator (D(z)) of Hdiscrete,BSF (z)
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3.8 Chebyshev Analog Lowpass Transfer Function

Based on the tolerance in the passband (δp) and the stopband (δs), we define two new quan-
tities:

D1 =
1

(1− δp)2
− 1 =

1

0.9222
− 1 = 0.1765

D2 =
1

δ2s
− 1 =

1

0.152
− 1 = 43.4444

Using these newly defined quantities, the minimum order for the Chebyshev filter is given as:

Nmin = ⌈
cosh−1(

√
D2/D1)

cosh−1(ΩLs/ΩLp)
⌉ = ⌈7.6767⌉ = 8

Solutions to the following equation gives us the poles of the transfer function:

1 +D1cosh
2

(
Ncosh−1

(
sL

jΩLp

))
= 1 + 0.1765cosh2

(
8cosh−1

(
sL
j

))
= 0

Figure 6: Poles of the Chebyshev Transfer Function

In order to get a stable lowpass filter, we must only include poles in the open-LHP.

p1 = −0.03932− 1.00051j
p2 = −0.03932 + 1.00051j

p3 = −0.11199− 0.84819j

p4 = −0.11199 + 0.84819j

p5 = −0.16760− 0.56674j

p6 = −0.16760 + 0.56674j

p7 = −0.19770− 0.19901j

p8 = −0.19770 + 0.19901j

The analog lowpass transfer function can be written as follows:

Hanalog,LPF (sL) =

∏8
i=1 pi√

(1 +D1)
∏8

i=1(sL − pi)
=

0.0186∏8
i=1(sL − pi)

The table given below contains the coefficients for the denominator of Hanalog,LPF (sL).
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Degree s8 s7 s6 s5 s4

Coefficient 1 1.03321 2.53376 1.89632 1.99933

Degree s3 s2 s1 s0

Coefficient 0.99079 0.50590 0.12846 0.02017

Table 20: Coefficients for the denominator of Hanalog,LPF (sL)

3.9 Chebyshev Analog Bandstop Transfer Function

The transformation between lowpass and bandstop is given by:

sL =
Bs

s2 +Ω2
0

=
1.156s

s2 + 0.7689

After substituting this value intoHanalog,LPF (sL), we getHanalog,BSF (s). SupposeHanalog,BSF (s)
is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:

Degree s16 s14 s12 s10 s8

Coefficient 0.02435 0.11513 0.23818 0.28157 0.20805

Degree s6 s4 s2 s0

Coefficient 0.09838 0.02908 0.00491 0.00036

Table 21: Coefficients for the numerator (N(s)) of Hanalog,BSF (s)

Degree s16 s15 s14 s13 s12 s11

Coefficient 0.02641 0.19442 1.00995 2.80826 8.07172 12.4740

Degree s10 s9 s8 s7 s6 s5

Coefficient 23.9124 21.2268 27.2145 12.5471 8.35493 2.57623

Degree s4 s3 s2 s1 s0

Coefficient 0.98539 0.20265 0.04308 0.00490 0.00039

Table 22: Coefficients for the denominator (D(s)) of Hanalog,BSF (s)

27



3.10 Chebyshev Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the
Bilinear transformation:

s =
1− z−1

1 + z−1

After substituting this value intoHanalog,BSF (s), we getHdiscrete,BSF (z). SupposeHdiscrete,BSF (z)
is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:

Degree z0 z−1 z−2 z−3 z−4 z−5

Coefficient 1 -4.11189 15.3971 -36.3872 77.2679 -126.378

Degree z−6 z−7 z−8 z−9 z−10 z−11

Coefficient 187.014 -226.058 248.292 -226.058 187.014 -126.378

Degree z−12 z−13 z−14 z−15 z−16

Coefficient 77.2679 -36.3872 15.3971 -4.11189 1

Table 23: Coefficients for the numerator (N(z)) of Hdiscrete,BSF (z)

Degree z0 z−1 z−2 z−3 z−4 z−5

Coefficient 121.653 -236.394 162.520 -143.341 359.238 -310.484

Degree z−6 z−7 z−8 z−9 z−10 z−11

Coefficient 17.0803 -63.9651 235.689 -50.0155 -99.7057 -40.0692

Degree z−12 z−13 z−14 z−15 z−16

Coefficient 86.1319 17.3447 -21.9911 -25.4840 17.5844

Table 24: Coefficients for the denominator (D(z)) of Hdiscrete,BSF (z)
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3.11 Elliptical Analog Lowpass Transfer Function

3.11.1 Jacobian Elliptical Integrals

The elliptical function ω = sn(z, k) can be defined using the elliptical integral:

z =

∫ ϕ

0

dθ√
1− k2sin2θ

Using a change of variables, we get

z =

∫ ω

0

dt√
(1− k2t2)(1− t2)

where ω = sin(ϕ(z, k)) and k is called the elliptic modulus with 0 ≤ k ≤ 1.
The three elliptical functions cn, dn, and cd are defined as follows:

ω = cn(z, k) = cosϕ(z, k)

ω = dn(z, k) =
d

dz
ϕ(z, k)

ω = cd(z, k) =
cnϕ(z, k)

dnϕ(z, k)

The complete elliptical integral is defined as the value of z at ϕ = π/2

K(k) =

∫ π/2

0

dθ√
1− k2sin2θ

at ϕ = π/2, the elliptical functions are defined as

sn(K, k) = 1 & cd(K, k) = 0

The complementary elliptical modulus k′ =
√
1− k2 can also be used to define the complete

elliptical integral

K(k′) =

∫ π/2

0

dθ√
1− k′2sin2θ

3.11.2 Elliptical Filter Parameters

Based on the tolerance in the passband (δp) and the stopband (δs), we define the following
quantities:

D1 =

√
1

(1− δp)2
− 1 =

√
1

(0.922)2
− 1 = 0.42

D2 =

√
1

(δs)2
− 1 =

√
1

(0.15)2
− 1 = 6.591

k1 =
D1

D2
=

0.42

6.591
= 0.0637

k′1 =
√
1− k21 = 0.998

k =
ΩLp

ΩLs

=
1

1.1024
= 0.9071
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k′ =
√
1− k2 = 0.4209

Using these newly defined quantities, the minimum order for the Elliptical filter is given as:

Nmin = ⌈K(k)×K(k′1)

K(k′)×K(k1)
⌉

where

K(k) =

∫ π/2

0

dθ√
1− k2sin2θ

The required elliptical integral values can be calculated using MATLAB:

K(k) = 2.31254 K(k′1) = 4.14286 K(k′) = 1.64828 K(k1) = 1.57239

Nmin = ⌈3.69654⌉ = 4

3.11.3 Poles and Zeroes

We define L and r as follows:

L = ⌊N
2
⌋ & r = mod(N, 2)

ui =
2i− 1

N
i = 1, 2....L

ζi = cd(ui, k)

The zeroes of the transfer function Hanalog,LPF (sL) are given as follows:

zi = jΩi =
j

k · ζi
i = 1, 2....L

We define ν0 as follows:

ν0 = − j

N
sn−1(

j

D1
, k1)

The poles of the transfer function Hanalog,LPF (sL) are given as follows:

pi = j · cd((ui − jν0), k) i = 1, 2....L

Since N is odd, there is an additional pole given by

p0 = j · cd((1− jν0), k) = j · sn(jν0, k)

The poles and zeroes are given as follows:

z1 = 1.09969j
z2 = −1.09969j
z3 = 1.93712j
z4 = −1.93712j

p1 = −0.0481 + 1.01142j
p2 = −0.0481− 1.01142j
p3 = −0.44991 + 0.71947j
p4 = −0.44991− 0.71947j

The analog lowpass transfer function can be written as follows:

Hanalog,LPF (sL) = 0.922

(∏4
i=1 pi

)(∏4
i=1(sL − zi)

)
(∏4

i=1 zi

)(∏4
i=1(sL − pi)

)
The tables given below contains the coefficients for the numerator and denominator ofHanalog,LPF (sL).
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Figure 7: Poles and Zeroes of the Elliptical Transfer Function

Degree s4 s2 s0

Coefficient 0.15 0.74426 0.68068

Table 25: Coefficients for the numerator of Hanalog,LPF (sL)

3.12 Elliptical Analog Bandpass Transfer Function

The transformation between lowpass and bandstop is given by:

sL =
Bs

s2 +Ω2
0

=
1.156s

s2 + 0.7689

After substituting this value intoHanalog,LPF (sL), we getHanalog,BSF (s). SupposeHanalog,BSF (s)
is represented as N(s)/D(s), we have N(s) and D(s) have the following coefficients:

3.13 Elliptical Discrete Time Filter Transfer Function

The transformation of the analog transfer function to the discrete domain is given by the
Bilinear transformation:

s =
1− z−1

1 + z−1

After substituting this value intoHanalog,BPF (s), we getHdiscrete,BPF (z). SupposeHdiscrete,BPF (z)
is represented as N(z)/D(z), the coefficients for N(z) and D(z) are given as follows:
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Degree s4 s3 s2 s1 s0

Coefficient 1 0.99602 1.8319 0.99184 0.73826

Table 26: Coefficients for the denominator of Hanalog,LPF (sL)

Degree s8 s6 s4 s2 s0

Coefficient 0.09522 0.36428 0.40159 0.12728 0.01162

Table 27: Coefficients for the numerator (N(s)) of Hanalog,BPF (s)

Degree s8 s7 s6 s5

Coefficient 0.10328 0.1604 0.58666 0.49968

Degree s4 s3 s2 s1 s0

Coefficient 0.8712 0.29536 0.20498 0.03313 0.01261

Table 28: Coefficients for the denominator (D(s)) of Hanalog,BPF (s)

Degree z0 z−1 z−2 z−3

Coefficient 1 -1.61681 3.35166 -3.73352

Degree z−4 z−5 z−6 z−7 z−8

Coefficient 4.97327 -3.73352 3.35166 -1.61681 1

Table 29: Coefficients for the numerator (N(z)) of Hdiscrete,BPF (z)

Degree z0 z−1 z−2 z−3

Coefficient 2.7673 -3.42438 4.04586 -4.10673

Degree z−4 z−5 z−6 z−7 z−8

Coefficient 5.42296 -2.99498 1.80734 -1.07983 0.79016

Table 30: Coefficients for the denominator (D(z)) of Hdiscrete,BPF (z)
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3.14 FIR Filter Parameters

Based on the required filter specifications, we define the following quantities:

A = −20 log10 δ = −20 log10 0.15 = 16.4782

Since A < 21, we take α = β = 0, and therefore the Kaiser window will be rectangular in
shape. The minimum width of the Kaiser window can be calculated using:

M ≥ 1 +
A− 8

2.285∆ωt
= 71.8627

where ∆ωt is the transition bandwidth, i.e., 5π/300. We take the next odd integer value, i.e.,
73. However, according to simulations, M = 91 is the minimum window width which properly
meets specifications.

3.15 FIR Discrete Time Filter

The coefficients for the obtained FIR filter are given as follows:

Figure 8: Coefficients of Hdiscrete,BSF (z)
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4 Cascading the two filters

4.1 Butterworth Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given
as follows:

Hdiscrete,cascade(z) = Hdiscrete,BPF (z)×Hdiscrete,BSF (z)

Figure 9: Coefficients for the numerator (N(z)) of Hdiscrete,cascade(z)

Figure 10: Coefficients for the denominator (D(z)) of Hdiscrete,cascade(z)
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4.2 Chebyshev Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given
as follows:

Hdiscrete,cascade(z) = Hdiscrete,BPF (z)×Hdiscrete,BSF (z)

Figure 11: Coefficients for the numerator (N(z)) of Hdiscrete,cascade(z)

Figure 12: Coefficients for the denominator (D(z)) of Hdiscrete,cascade(z)
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4.3 Elliptical Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given
as follows:

Hdiscrete,cascade(z) = Hdiscrete,BPF (z)×Hdiscrete,BSF (z)

Figure 13: Coefficients for the numerator (N(z)) of Hdiscrete,cascade(z)

Figure 14: Coefficients for the denominator (D(z)) of Hdiscrete,cascade(z)
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4.4 FIR Cascaded Filter

The discrete-time transfer function after cascading the bandpass and bandstop filters is given
as follows:

Hdiscrete,cascade(z) = Hdiscrete,BPF (z)×Hdiscrete,BSF (z)

Figure 15: Coefficients of Hdiscrete,cascade(z)
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5 MATLAB Simulations

5.1 Acknowledgement

The report format and the MATLAB codes are inspired by the Ashwin Bhat’s previous year
submission (available on MSTeams Class Resources).

5.2 Butterworth Bandpass Filter

Figure 16: Lowpass Analog Filter Response for the Bandpass Filter

Figure 17: Magnitude Response for the Bandpass Analog Filter
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Figure 18: Phase Response for the Bandpass Analog Filter

Figure 19: Bandpass Discrete-time Filter Response
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5.3 Butterworth Bandstop Filter

Figure 20: Lowpass Analog Filter Response for the Bandstop Filter

Figure 21: Magnitude Response for the Bandstop Filter
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Figure 22: Phase Response for the Bandstop Filter

Figure 23: Bandstop Discrete-time Filter Response
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5.4 Butterworth Cascaded filter

Figure 24: Cascade Discrete-time Filter Magnitude Response
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Figure 25: Cascade Discrete-time Filter Filter Response
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5.5 Chebyshev Bandpass Filter

Figure 26: Lowpass Analog Filter Response for the Bandpass Filter

Figure 27: Magnitude Response for the Bandpass Analog Filter
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Figure 28: Phase Response for the Bandpass Analog Filter

Figure 29: Bandpass Discrete-time Filter Response
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5.6 Chebyshev Bandstop Filter

Figure 30: Lowpass Analog Filter Response for the Bandstop Filter

Figure 31: Magnitude Response for the Bandstop Filter
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Figure 32: Phase Response for the Bandstop Filter

Figure 33: Bandstop Discrete-time Filter Response
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5.7 Chebyshev Cascaded filter

Figure 34: Cascade Discrete-time Filter Magnitude Response
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Figure 35: Cascade Discrete-time Filter Filter Response
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5.8 Elliptical Bandpass Filter

Figure 36: Lowpass Analog Filter Response for the Bandpass Filter

Figure 37: Magnitude Response for the Bandpass Analog Filter
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Figure 38: Phase Response for the Bandpass Analog Filter

Figure 39: Bandpass Discrete-time Filter Response
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5.9 Elliptical Bandstop Filter

Figure 40: Lowpass Analog Filter Response for the Bandstop Filter

Figure 41: Magnitude Response for the Bandstop Filter
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Figure 42: Phase Response for the Bandstop Filter

Figure 43: Bandstop Discrete-time Filter Response
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5.10 Elliptical Cascaded filter

Figure 44: Cascade Discrete-time Filter Magnitude Response
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Figure 45: Cascade Discrete-time Filter Filter Response
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5.11 FIR Bandpass Filter

Figure 46: Bandpass Discrete-time Filter Response
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Figure 47: Bandpass Discrete-time Filter Response

Figure 48: Bandpass Discrete-time Impulse Response
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5.12 FIR Bandstop Filter

Figure 49: Bandstop Discrete-time Filter Response
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Figure 50: Bandstop Discrete-time Filter Response

Figure 51: Bandstop Discrete-time Impulse Response
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5.13 FIR Cascaded filter

Figure 52: Cascade Discrete-time Filter Magnitude Response
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Figure 53: Cascade Discrete-time Filter Filter Response

Figure 54: Cascade Discrete-time Impulse Response
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6 Comparing the different filter types

• Passband and stopband: Butterworth filter has a monotonic response in both pass-
band and stopband. Chebyshev filter has a monotonic stopband and an oscillatory
passband response. Elliptical filters have an oscillatory response in both the passband
and the stopband.

• Transition Band: Elliptical filter has the sharpest transition band. This reduces in
the case of the Chebyshev filter and the Butterworth filter, and the FIR filter has the
slowest passband to stopband transition.

• Filter Order: For the same specifications, elliptical filter has the smallest order (4),
followed by Chebyshev (9), Butterworth (28), and FIR has the highest order (91).

• Phase Response: The FIR filters gives a perfectly linear phase response. Butterworth
filter has an almost linear phase response. Chebyshev filter has a more non-linear phase
response than Butterworth and the Elliptical filter has an even more non-linearity in its
phase response.
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7 Peer Reviews

7.1 Arya Vishe - 20d070018

I have thoroughly reviewed the filter design report of Arya Vishe, 20d070018 and have
found it to be correct. The filters were designed with proper steps, starting from the un-
normalized specifications to the final discrete-time filter magnitude response. Sufficient sim-
ulation results and plots were provided for both the magnitude and phase response of the
bandpass, bandstop, and multi-band filters.

7.2 Rajput Nikhileshsing Kailassing - 200070067

I have thoroughly reviewed the filter design report of Rajput Nikhileshsing Kailassing,
200070067 and have found it to be correct. The filters were designed with proper steps,
starting from the un-normalized specifications to the final discrete-time filter magnitude re-
sponse. Sufficient simulation results and plots were provided for both the magnitude and
phase response of the bandpass, bandstop, and multi-band filters.
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