Freeflow Core

Project Report

Submitted in partial fulfillment of the requirements

for the completion of the course
EE748: Advanced Topics in Computer Architecture
by

Team - 1

Neeraj Prabhu (200070049)
Anubhav Bhatla (200070008)

Under the guidance of
Prof. Virendra Singh

Department of Electrical Engineering
Indian Institute of Technology Bombay
October 2023

Contents

List of Figures

1 Introduction
1.1 sO00 Cores o
1.2 Freeflow Core

2 Literature Survey

3 Overview of Freeflow Core
3.1 Detecting high-latency instructions

4 Implementation
4.1 [Issuing in dispatch order
4.2 Implementation of Multiple Queues

List of Figures

3.1 An overview of the Freeflow Core Micro-architecture.

Chapter 1

Introduction

Processor cores have evolved from simple in-order designs to complex superscalar out-of-
order machines. There have been several efforts to expose instruction-level parallelism
(ILP) so that all the execution units can be occupied and hence improve single-threaded
application performance. This led to the emergence of multi and many-core proces-
sors, which introduced challenges such as increasing performance within a given power
budget. Such advancements were also accompanied by an increase in memory hierar-
chy levels. Hence, the focus shifted towards hiding memory latency in the execution
of programs. Since ILP-extracting techniques automatically expose memory hierarchy
parallelism (MHP) as well, out-of-order cores are naturally successful in coping with this
problem. However, OoO cores have a high area and power budget. This has hence created
two diverse types of cores: in-order cores, with their high energy efficiency but low ILP
extraction, and out-of-order cores, which give a high performance but consume a lot of
power as well. The ideal many-core building block is, therefore, an energy-efficient core
that can still maximize extraction of memory hierarchy parallelism, a combination that
neither traditional in-order nor out-of-order processors provide. One such technique is
the slicing of instructions, either on software or on hardware, in order to execute these
slices out-of-order with respect to the general instruction flow.

1.1 sOo00O Cores

Slice-out-of-order (sOo0) cores are a new class of cores which help minimize the energy
cost of the MLP-exploiting techniques used by traditional OoO cores. They achieve this
by adding just enough OoO functionality so as to extract MLP. Slices, or groups, of MLP-
generating instructions, are constructed that contain the address-generating instructions
(AGI) leading up to loads and/or stores. These slices are executed out-of-order with
respect to the remaining instructions. Executing these slices out-of-order compared to
the rest of the instructions helps these MLP-extracting instructions bypass the rest of
the potentially stalled instructions. Even though these sOoO can only extract limited
MLP from the program, they are able to bridge a large chunk of the performance gap
between in-order and out-of-order processors. And, since they only require a few hardware
additions on top of in-order cores, they are able to achieve such high performance at a
fraction of the energy cost of OoO processors. Load-Slice Core [1] is a state-of-the-
art implementation of sOoO which provisions different queues for compute and memory
instructions and implements an iterative backward dependency analysis technique to
identify AGIs in a hardware-efficient manner.

Even though sOoO cores help massively bridge the MLP gap between InO and OoO
cores, they still suffer from frequent stalls for two reasons. First, slices can depend on

each other, which may limit the MLP-extraction possibilities. Consider the case where
the head of the memory-access pipeline is stalled due to a dependency on a load in another
slice. Now, even if a younger instruction in the memory-access pipeline, which belongs
to an independent slice, is ready to execute, it will get blocked. The Freeway Core [2]
tackles this problem by provisioning an additional pipeline which buffers these dependent
slices and allows smooth execution of independent slices in the memory-access queue.

Second, an instruction stalled at the head of the compute pipeline due to its depen-
dency on a long-latency load in the memory-access queue will lead to unnecessary stalls
for younger, ready-to-execute instructions in the compute pipeline. This necessitates spe-
cial treatment for such blocking instructions so that younger instructions can progress.
Freeflow Core [3] is one such architecture which bypasses these blocking instructions to
another queue and thus reduces unnecessary stalls in the compute pipeline.

1.2 Freeflow Core

Freeflow proposes a micro-architectural technique to detect and bypass blocking instruc-
tions in the compute pipeline to another queue, called the bypass queue. Freeflow core
focuses on instructions which stall the compute pipeline because of dependency on long
latency loads in the memory access pipeline. Such instructions block the execution of
younger instructions in the compute pipeline, which may have their operands ready.
These kinds of blocking instructions are moved to another queue (separate from the com-
pute and memory access queue), which dispatches instructions only when ready and, at
the same time, prevents blocking the younger instructions from execution. Freeflow core
maintains a freeflow instruction slice table (FIST) to identify instructions dependent on
unresolved memory instructions.

Chapter 2

Literature Survey

The Decoupled Access/Execute architecture [4] uses two separate pipelines: one for mem-
ory accesses to fetch operands and store results and another for execution of operands
to generate the required results. Hence, it improves performance without a high design
complexity. Additionally, it hides the memory communication delays by using another
pipeline to run memory operations.

The Load Slice core [1] implements an iterative backward dependency analysis algo-
rithm to identify address-generating instructions which eventually lead to memory ac-
cesses. All such address-generating instructions are moved to the bypass queue along
with the memory-access instructions. Such an architecture gives a 53% improvement in
performance over an in-order core, bridging more than half the gap between an in-order
core and an Qo0 core. It is 43% more energy efficient as compared to an in-order core
and 4.7x more energy efficient compared to an OoO core.

Freeway core [2] exploits MLP by identifying instructions which block the memory
access pipeline because of some dependency and hence prevent the execution of younger
instructions which may be ready. It tracks such dependent slices and moves them to a
third queue so that the independent slices can be executed. This gives a performance
benefit of 53% over an in-order core and is within 7% of the MLP limits of full OoO
execution.

Freeflow core [3] identifies instructions which block the compute pipeline due to un-
resolved memory access instructions. Such instructions are moved to another queue
depending on the value of a counter which stores the number of cycles the instruction
blocks a particular queue. This type of architecture gives 89.4% better performance than
an InO core and lags behind the OoO core by 14%. It is 100%, 18% and 46% more energy
efficient than OoO, LSC and in-order cores, respectively.

Chapter 3

Overview of Freeflow Core

Freeflow core aims to exploit the inherent ILP in the compute pipeline of sOoO architec-
tures. It does so by detecting high-latency instructions that are dependent on unresolved
memory instructions in the memory-access queue (B-@)) and could potentially stall the
compute queue (A-Q)) once it reaches the head of the queue. Once such instructions are
detected, they are guided to a different execution path, i.e., an additional queue called

the C-Q.

3.1 Detecting high-latency instructions

Instructions which are dependent on long latency memory instructions in the B-Q can
stall the A-Q for a long period of time. Freeflow detects such instructions using a Set
Counter at the head of the A-Q. This is used to count the number of cycles an instruction
remains stalled at the head of the A-Q. If this instruction remains stalled for more than six
cycles, it is registered in an additional hardware structure called the Freeflow Instruction
Slice Table (FIST). In the next iteration, these high-latency instructions get a hit in the
FIST and are bypassed to the C-Q.

An additional counter called the Reset Counter, is used at the head of the C-Q to count
the number of cycles an instruction remains stalled at the head of the C-Q. In the case
where this counter is below the threshold of six cycles, the FIST entry for this instruction
is invalidated, as it is no longer a high-latency instruction. Finally, all instructions are
committed in order with the help of the scoreboard.

Figure 3.1 provides an overview of the Freeflow Core architecture and highlights its
additions and modifications on top of the state-of-the-art Load-Slice Core.

‘ Physical Register File (PRT) ‘

\ 4

c-Q =

FIST
(EC)
¥

Dispatch
W

|:I Freeflow

Core

- LS Core

Figure 3.1: An overview of the Freeflow Core Micro-architecture

Chapter 4

Implementation

We are implementing the Load Slice core and the Freeflow core using Gemb [5], a cycle-
accurate micro-architecture simulator. We have used the in-order (gemb MinorCPU) and
the out-of-order (gem5 O3CPU) cores as baselines for comparison.

We are modifying the O3CPU model in gem) to incorporate the A-Q, B-Q and C-Q
along with the instruction slice table, the register dependency table and the freeflow
instructions slice table.

4.1 Issuing in dispatch order

We used the O3CPU on gem5 and converted the dispatch to in-order. We decided to
use the O3CPU instead of the in-order MinorCPU because we needed the property of
register renaming in the Freeflow core. This was conveniently used form the O3CPU
model rather than creating a new register renaming block in the minor CPU model.

The gemb implementation of the dispatch stage consists of an instruction list and a
priority queue consisting of the instructions executed. For the out-of-order execution,
the instruction at the head of the priority queue is selected. However, we modified this to
control the dispatch such that the ready queue waits till its head has the oldest instruction
which has not been dispatched. The instruction list stores every instruction that is fetched
by the CPU till it has been retired. Hence it fills up in program order. Hence, we checked
the variable isIssued() to check the issue status of the instructions from the front of
the list. When we reached the first instruction, which was not issued, we labelled it as
the oldest instruction in the sequence. The head of the ready instructions priority queue
was checked to be equal to the oldest instruction. The instruction was dispatched only if
the equality was satisfied. Since the ready instructions struct was a priority queue, the
head was guaranteed to be the oldest instruction after a few cycles, if not immediately.

Once we implemented this, we noticed the presence of squashing instructions, which
were causing some issues, especially because they caused the instruction list entries to
get deleted but not the entries in ready instructions. Hence, we tackled this problem by
using the isSquashed() object of the instruction. In the cases when the instruction at
the head of the priority queue was squashed, the entry was removed from the priority
queue, and the next entry was checked.

4.2 Implementation of Multiple Queues

We decided to keep multiple instruction lists for this purpose, such that each incoming
instruction was checked to be either a load, store or memory reference instruction and
was passed to either of the lists accordingly. The oldest instruction from these two lists

was selected for issue, depending on whether they were ready or not. The ready queues
were already partitioned based on the functional unit and execution pipeline to be used.
Hence, we did not make any changes to parts concerning dispatch after the ready queue.

References

1]

T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The load slice
core microarchitecture,” in Proceedings of the 42nd Annual International Symposium
on Computer Architecture, p. 272-284, 2015.

R. Kumar, M. Alipour, and D. Black-Schaffer, “Freeway: Maximizing mlp for slice-
out-of-order execution,” in 2019 IEEFE International Symposium on High Performance
Computer Architecture (HPCA), pp. 558-569, 2019.

R. K. Choudhary, N. Singh, H. Nair, R. Rawat, and V. Singh, “Freeflow core: En-
hancing performance of in-order cores with energy efficiency,” in 2019 IEEE 37th
International Conference on Computer Design (ICCD), pp. 702-705, 2019.

J. E. Smith, “Decoupled access/execute computer architectures,” in Proceedings of
the 9th Annual Symposium on Computer Architecture, p. 112-119, 1982.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” 2011.

10

	List of Figures
	Introduction
	sOoO Cores
	Freeflow Core

	Literature Survey
	Overview of Freeflow Core
	Detecting high-latency instructions

	Implementation
	Issuing in dispatch order
	Implementation of Multiple Queues

