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I. INTRODUCTION

In deep learning tasks, input data is first processed through
the artificial neural network (ANN) in a feed-forward pass,
resulting in an initial prediction, which is compared to the
ground truth to calculate a loss. Backpropagation is a training
algorithm for ANNs in which the gradients of the loss are
computed with respect to the network weights and biases
while moving backwards through the network, layer by layer.
The gradients indicate the direction and magnitude of changes
needed in the network’s parameters to reduce the loss. These
changes are made using optimizing algorithms, based on a
learning rate. This is repeated till the loss is sufficiently
minimized. The steps in backpropagation are computationally
intensive and unsuitable for real-time applications that require
low latency and fast data processing. Backpropagation also
relies on labeled training data to compute gradients, making
it less suitable for unsupervised or self-supervised learning
scenarios.

Equilibrium Propagation (EP) [1] is an alternative training
algorithm that addresses these limitations of backpropagation.
It treats ANNs as dynamical systems that evolve over time
while backpropagation treats each training example in isola-
tion. EP aims to reduce the need for explicit supervision and
be more adaptable to unsupervised learning tasks. It improves
the generalization performance of neural networks by focusing
on energy-based objectives that encourage the model to learn
relevant and robust features from the data. EP captures the
principles of neural information processing in the brain by
mimicking the way neurons reach equilibrium states during
learning. It leverages energy functions for learning and infer-
ence in neural networks by finding stable equilibrium states of
minimum energy that best match the input data by iteratively
updating the network’s activations. Feedback connections are
used to transmit information about the difference between the
current state and the target state like recurrent connections in
biological neural networks.

In this project, we have used 45nm CMOS Technology
to implement spiking equilibrium propagation. Spiking Equi-
librium Propagation (SEP) is an extension of the Equilib-
rium Propagation (EP) learning algorithm which combines
the principles of EP with spiking neural network (SNN)
architectures, which are biologically inspired models of neural
computation. SNNs use discrete, spike-based communication
between neurons, resembling the way neurons in the brain
transmit information. SEP retains the energy-based modeling
concept found in EP, using an energy function to measure the

compatibility between the current state and the input data, to
find states of minimum energy that best represent the data.
Like EP, SEP treats the neural network as a dynamical system
and is particularly well-suited for tasks where precise timing
and spike-based encoding are important.

II. BACKGROUND

Energy-based models (EBMs) are a class of machine learn-
ing models characterized by the use of energy functions to
quantify the compatibility or goodness of fit between data and
model configurations.The energy function assigns an energy
score to each possible configuration. Lower energy configu-
rations are favorable and correspond to better representations
of the data. During training, the energy function is learned or
fine-tuned to minimize the difference between the energy of
observed data and that of generated or model data. Inference in
EBMs often involves finding the configuration that minimizes
the energy, which can be done by gradient based methods.
EBMs are particularly useful in situations where capturing
dependencies between variables is crucial.

CMOS is a widely used technology for the design and
fabrication of integrated circuits and digital electronic devices.
CMOS technology is known for its energy efficiency, low
power consumption, and high integration capabilities, making
it suitable for a wide range of applications. A CMOS im-
plementation refers to the realization of a digital or analog
electronic system using CMOS technology. This involves
designing and fabricating the circuit or system using CMOS
transistors and components.

Real-time learning refers to the ability of a system, to
continuously adapt and update its knowledge, model, under-
standing or behavior in a near-instantaneous fashion, based
on incoming data as it becomes available. This is in contrast
to offline or batch learning, where models are trained on
static datasets and updated less frequently. Real-time learning
systems respond quickly to new information, which is crucial
for applications where timely decisions are required. Real-time
learning comes with challenges related to the need for efficient
algorithms, low-latency processing, and handling noisy or
streaming data.

III. OBJECTIVE

Our objective is to develop a hardware-based implementa-
tion of the Equilibrium Propagation (EP) learning algorithm in
the form of CMOS circuits, specifically designed for real-time
learning.
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Fig. 1. Schematic design for spiking equilibrium propagation in 45nm CMOS technology.

We hypothesize that

• Using CMOS technology for the implementation of SEPs
will provide higher energy efficiency and low power
consumption as compared to conventional neural network
hardware.

• The use of spiking neural networks will lead to a more
biologically plausible learning system which will closely
mimic the principles of neural information processing in
the brain.

• CMOS-based SEP will be capable of real-time learning,
with the system adapting rapidly to changing data inputs,
due to its low latency and scalability.

IV. EXPERIMENT

Figure 1 describes the schematic for modelling spiking
equilibrium propagation between a pre-synaptic neuron and
a single post-synaptic neuron. We shall now study and imple-
ment this circuit by dividing it into five blocks described as
follow:

A. Integrate-and-fire circuit

The integrate-and-fire (IFC) circuit mimics the spiking
behaviour of a LIF post-synaptic neuron. The spikes are
generated using a Schmitt trigger, which provides two different
threshold voltage levels for the rising and falling edge. We
have implemented the Schmitt trigger using 45nm CMOS
technology. Once the input voltage reaches a threshold, the
Schmitt trigger switches high, activating an nMOS to discharge
the capacitor. The Schmitt trigger output remains high until
the capacitor voltage goes below a certain value. This rapid
switching generates spikes which imitate post-synaptic neuron
spiking. Refer Figure 2 for the schematic of the integrate-and-
fire circuit.

Fig. 2. IFC using a Schmitt Trigger.

B. Two-stage Low-pass Filter

The output spikes from the IFC stage need to be leaky-
integrated with a two-stage low-pass filter. We use two diode-
connected nMOS devices in series, with capacitors from
each diode’s output to ground. Using diodes ensures that the
capacitor voltage increases rapidly with each spike but decays
slowly between spikes. An Opamp-based buffer separates the
output from the next stage. The circuit schematic is shown in
Figure 3.

Fig. 3. Two-stage Low-pass Filter.
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C. Derivative circuit with comparators

We build a derivative circuit using an RC circuit. Figure
4 shows the schematic used for implementing the derivative
circuit. The output signal is proportional to the derivative of
the input signal. This derivative signal is fed to two Opamp-
based comparators with thresholds of +20mV and -20mV
respectively. The output of the two comparators is combined
to generate the Vgrad signal.

Fig. 4. Derivative circuit with comparators.

D. Bias circuit

The bias circuit takes the gradient of the spike rate as an
input and outputs the bias voltages, Vbp and Vbn, which are
then fed to the synapse circuit. When a low Vgrad is asserted,
M4 pulls Vbp to VDD. M1 is off, but the current source through
M2 pulls the gate/drain voltage (Vbn) over GND. The opposite
is true for a high Vgrad, with the current through M3 pulling
Vbp below VDD, and M1 pulling Vbn to GND. Figure 5 shows
the schemtic used for the bias circuit.

Fig. 5. Bias circuit.

E. Synapse circuit

The synapse circuit takes in inputs from both the pre-
synaptic neuron (VIN ) and the post-synaptic neuron (Vbp, Vbn).
Finally, it outputs IOUT which is fed back to the post-synaptic
IFC. The update signal (V∆W ) is also driven by the output
spikes of the post-synaptic neuron. The capacitor (refer Figure
6) gets charged when Vbp is VDD and Vbn > GND, and when
V∆W spikes. When Vbn is GND and Vbp < VDD, the pMOS
conducts and the capacitor discharges. When Vbp is VDD and
Vbn is at GND, neither the pMOS nor the nMOS conducts and
the capacitor voltage remains steady.

Fig. 6. Synapse circuit.

V. RESULTS

We separately simulate all the five blocks described in the
previous section. Figure 7 shows the output of the IFC for a
sinusoidal input. We observe that when the input voltage goes
above a certain threshold (≈0.6V ), the Schmitt trigger output
voltage is triggered and get VDD at the output of the inverter.
Similarly, once the input voltage goes below the threshold
voltage of ≈ 0.4V , the Schmitt trigger output voltage gets
triggered and we see GND at the inverter output.

Fig. 7. Output of the integrate-and-fire circuit for a sinusoidal input.

The bode plot shown in Figure 8 shows a 3-dB frequency
of ≈ 500kHz. To test the two-stage low-pass filter, we use
a 100Hz sinusoidal input signal, with 100kHz noise added to
it. In Figure 9 we observe a smooth signal at the output, as
expected from the low-pass filter.
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Fig. 8. Bode plot for the two-stage low-pass filter.

Fig. 9. Output of the two-stage low-pass filter for a noisy sinusoidal signal.

The bode plot for the derivative circuit shown in Figure 10
shows a 3-dB frequency of ≈ 300kHz. A sinusoidal input is
applied as input to the derivative circuit. The cosine waveform
seen at the output of the derivative circuit is passed to the two
comparators and then two comparator outputs are combined
to generate the Vgrad signal, as seen in Figure 11.

Fig. 10. Bode plot for the RC derivative circuit.

Fig. 11. Output of the derivative circuit and the comparators for a sinusoidal
input.

The bias circuit is used to generate the Vbp and Vbn voltages
as its outputs using the Vgrad input voltage. As mentioned in
[2], we require a reasonably high Vbp and Vbn for very small
values of Vgrad. As Vgrad increases, Vbn reduces and saturates
close to GND. Upon further increasing Vgrad, Vbp also reduces
and saturates around (VDD/2). Figure 12 shows the obtained
input-output characteristics for the bias circuit.

Fig. 12. DC analysis of the bias circuit as Vgrad varies from 0 to 1V.

Figure 13 shows the change in capacitor voltage as we vary
Vbp and Vbn and provide spikes at V∆W . The characteristics
are in line with our expectations described in the previous
section.

Fig. 13. Change in capacitor voltage for different values of Vbp and Vbn.

Figure 14 shows the post-synaptic neuron spikes generated
at the output of the IFC circuit and its leaky integration after
passing through the two-stage low-pass circuit. This is then
passed through the derivative circuit to generate the output
shown in Figure 15. We can also observe threshold voltages
of ±20mV .

Fig. 14. Post-synaptic neuron spikes (green) and its leaky integration after
passing through a two-stage low-pass filter (blue).
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Fig. 15. The output of the differentiator circuit (pink) along with the threshold
voltages (green and blue).

Figure 16 shows the final capacitor voltage obtained at
the output of the synapse circuit. The bias voltages and the
Vin pre-synaptic neuron spikes have also been show. We can
observe that the capacitor voltage trend is in line with the
previously observed trend for the synapse circuit.

Fig. 16. The capacitor voltage (green) observed for a spiking pre-synaptic
neuron input (blue). The corresponding bias voltages have also been shown.

VI. CONCLUSION

Thus, we have successfully simulated the neuron and synap-
tic circuit of the spike equilibrium propagation hardware using
45nm CMOS technology with total power consumption of
82.65µW , out which only 8.79µW is taken up by the synapse
circuit. We have cascaded the integrate and fire circuit, two
stage lowpass filter, derivative circuit, bias circuit and synaptic
circuit such that each operates within its required region of
operation. The five blocks are working individually as well as
together as intended. This combined circuit gives us a low-
power and energy efficient, biologically inspired algorithm
for real time learning tasks. Future experiments will involve
alterations of this circuit in-order to make improvements in it.
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