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1 Proposal

The goal is to develop a hardware accelerator for an SNN for high-performance inference.
The model used inside the neuron will be Integrate-and-Fire (IF). The inference capabilities
of the accelerator shall be evaluated using the MNIST dataset, where each image is a 28x28
matrix of pixels.

2 Introduction

Convolutional Neural Networks (CNNs), commonly used in ANNs, require significant compu-
tational resources for each neuron, leading to inefficient resource utilisation. Spiking Neural
Networks (SNNs), an emerging event-based neural network type, offer a solution by exchang-
ing information via binary spikes, minimising resource usage. SNNs treat time as an additional
dimension, making them suitable for processing time series data.
Although SNNs have been primarily implemented on CPUs and GPUs, the demand for specific
ASIC processors has risen due to the inefficiency of traditional computing architectures in
supporting the sparse features of SNNs. Field Programmable Gate Arrays (FPGAs) provide
a promising solution for implementing accelerators at the edge due to their programmability.

Figure 1: Spiking Neural Network
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3 Design

3.1 Neuron

The neuron block is designed to simulate the working of an actual brain neuron using the
Integrate-and-Fire neuron model with a refractory period. The potential of a neuron is de-
fined by the input spike coming in from each of its connections multiplied by the weight of
the connection. Once this potential value reaches a threshold, and the neuron is not in its
refractory period, an output spike is generated. An overview of the neuron block is given in
Fig. 2

clk

reset

enable

[9:0] weight address

weight enable

[31:0] weight data

[PREV_LAYER_NEURON-1:0] spike input

output spikeNeuron

Figure 2: Overview of the neuron block

3.2 Input Layer

The input layer comprises 784 neurons, each corresponding to a pixel in the MNIST image.
The MNIST image is encoded as a spike train so that it can be correctly interpreted by our
neuron logic. Each of these neurons receives a spike train as their input and sends out an
output spike train.

3.3 Hidden Layer

The hidden layer comprises 100 neurons which are used to perform classification of the image.
The number of these neurons can be varied. Increasing the number of neurons helps improve
accuracy but requires more memory bits (more weights stored in ROM) while decreasing it
will impact classification accuracy.

3.4 Max-comparer

The max comparer block takes the spike count of each of the hidden layer neurons and finds
the neuron with the highest spike count. The prediction made by this neuron has the highest
probability of being correct, therefore we shall use this assignment as our classification output.
An overview of the max-comparer block is given in Fig. 3

clk
[TAG_WIDTH -1 : 0] output tag

[DATA_WIDTH-1 : 0] input data[ITEM_CNT-1 : 0]
Max Comparer

Figure 3: Overview of the max-comparer block
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3.5 IPs

We use the BRAM IP provided by Vivado to instantiate the different read-only memories
required in our implementation. We require three different ROM instances, the first one to
store the input image in a spike-encoded format, the second one to store all the weights for the
synapse connections between input-layer neurons and hidden-layer neurons. The third ROM
is used to define the classification assignment for each of the hidden-layer neurons. Table 1
describes the properties of the various BRAM instances used.

BRAM instance Width (bits) Depth (entries)

Input Memory 784 200

Weight Memory 3200 784

Assignment Memory 400 2

Table 1: Overview of the BRAM instances used in our design

3.6 SNN

The complete block diagram of our design is given in Fig. 4. The input memory stores an
MNIST image in an encoded format which is then read by each of the input neurons. These
neurons then propagate their output spikes to each of the hidden layer neurons. The weights
of each of these synapses are provided by the weight memory. The output of these hidden
layer neurons is sent to the max-comparer block which finds the neuron with the highest spike
count. The assignment corresponding to the neuron is found using the assignment memory,
which finally gives us our final output.

Output
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Figure 4: Overview of the entire SNN flow

6



4 Testbench

The testbench is quite straightforward, with the clk, rst, en signals being sent to the DUT
and the result being read from it. However, it is important to note that the DUT must be
simulated for a long enough time so that the timestep reaches its maximum value (200), i.e.,
the entire input spike train has been read successfully and the classification output is steady.

`timescale 1ns / 1ns

module snn_sim();

logic clk, rst, en;

always begin clk <= 1'b1; #5; clk <= 1'b0; #5; end

initial begin rst = 1'b1; #18; rst = 1'b0; end

assign en = 1'b1;

logic [3:0] result;

snn dut(clk, rst, en, result);

endmodule

5 Simulation

5.1 Input Format

The MNIST image is provided as a set of input spikes to each input neuron. Each input
neuron receives values for 200 time steps, and these spikes represent the data at that pixel in
the MNIST image. To generate this encoded image, we use the scripts provided by https://

github.com/oshears/fpga_snn_models. We simulate our setup for different MNIST labels
and note the classification accuracy for the same.

5.2 Simulation output

The input image has a label of 5. Fig. 5 shows the output waveform for this test case. We
can observe that after timestep reaches its final value (ca), and stays stable suggesting all
the timesteps have been processed the classification result is 5.

Figure 5: Simulation output for test case

6 Synthesis

6.1 Resource Usage

Fig. 6 shows the overall resource usage of our design. We can observe that due to the use of
such large ROMs, the BRAM resource usage is quite high at around 270 BRAMs.
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Figure 6: Detailed resource summary for our design.

7 Challenges faced

• Generating encoded input images: The scripts for generating the input image
binaries had a few bugs and outdated library functions. We also had to write additional
scripts to generate a .coe file using a binary.

• Resource usage: Due to the use of large ROMs to store weights and the input image,
the design has a very high resource usage. We were not able to compile the design on
Quartus so we decided to used Vivado for compilation.

• RTL: The synthesis of the design was very time consuming. The total time taken for
synthesis was well more than 12 hours. We had to stop the synthesis after we got an
account of the resource usage.
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