EE619: Project-II

Anubhav Bhatla, 200070008

April 21, 2024

Design for Cross-coupled Oscillator

In order to limit the power below 3mW, we can take I to be **2mA**. Say we choose $L_1 = L_2 = 1$ nH (if we use a centre-tapped inductor: L = 2nH). The oscillation frequency is given as follows:

$$2\pi \times f_{osc} = \frac{1}{\sqrt{L_1(C_1 + C_{var})}}$$

For an oscillation frequency of 6GHz, we get $C_1 + C_{var} = 700 fF$. Say we choose $C_{var} = 20 fF$ and $C_1 = C_2 = 680 fF$.

We can choose a width W = 3200nm for M_0 and M_1 in order to get nearly complete current switching with V_{swing} .

In order to scale I_{BIAS} to I requires a width ratio of $I/I_{BIAS} = 10$. Therefore we can use $W = 10 \mu m$ and $1 \mu m$ for M_2 and M_3 respectively.

Table 1 summarizes the final component parameters used. Figure 1 shows the schematic of the VCO along with component parameter annotations and 2 shows the schematic for the testbench used.

MOS Devices	Finger Width	Length	Multipliers	Fingers
M_0	800nm	$60 \mathrm{nm}$	1	4
M_1	800m	$60 \mathrm{nm}$	1	4
M_2	$5\mu\mathrm{m}$	$60 \mathrm{nm}$	1	2
M_3	$500 \mathrm{nm}$	$60 \mathrm{nm}$	1	2
Passive Components				Value
L				2nH
C_0				20fF
C_1				$20\mathrm{fF}$
C_2				$501 \mathrm{fF}$
C_3				501fF
I _{BIAS}				$200\mu A$
V _{DD}				1.2V

Table 1: Component parameters used for the VCO.

1 Schematic

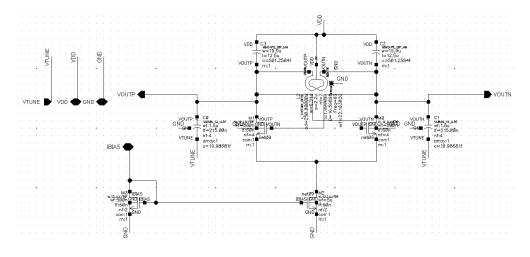
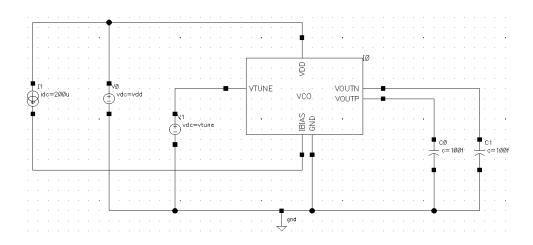
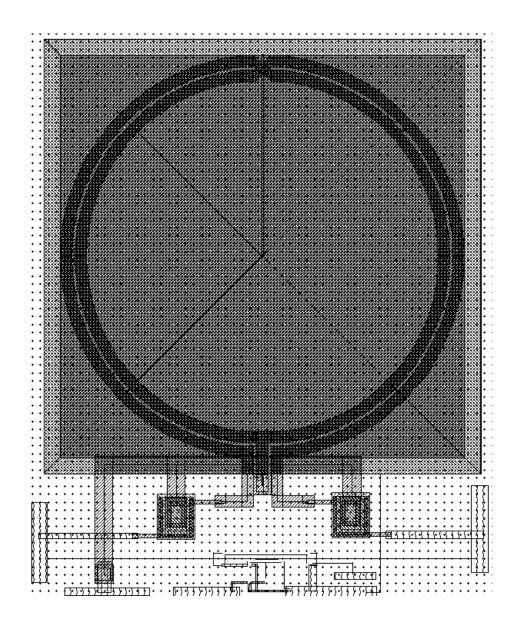
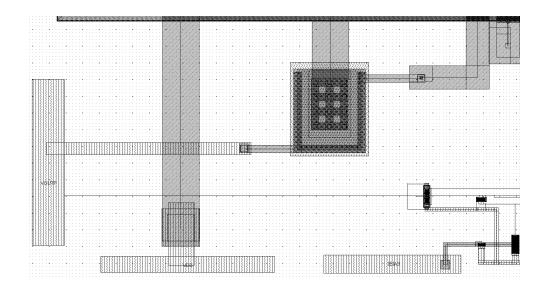
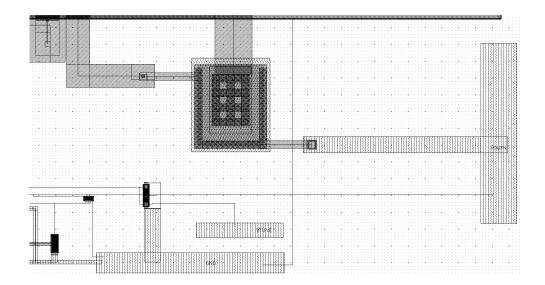
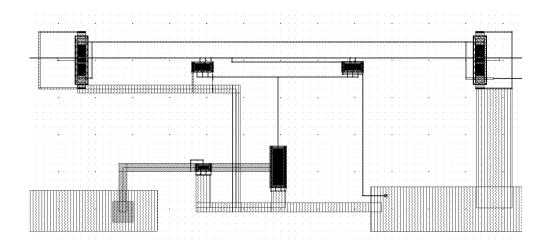
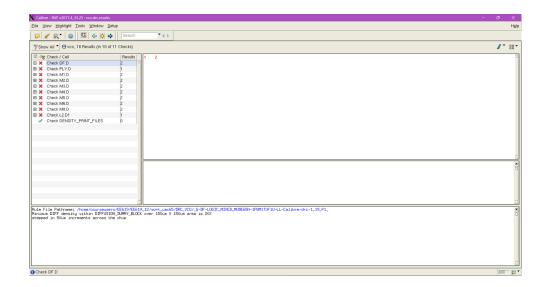


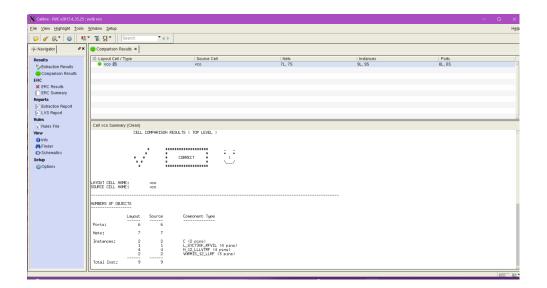
Figure 1: Schematic for the VCO with component parameter annotations.


Figure 2: Schematic for the VCO testbench.

2 Layout





3 DRC

4 LVS

5 Transient

Figure 3 shows the transient signal at the output node of the designed VCO. Here, we can see that we have a peak-to-peak voltage swing of around $1.083V_{pp}$, which meets the required specification.

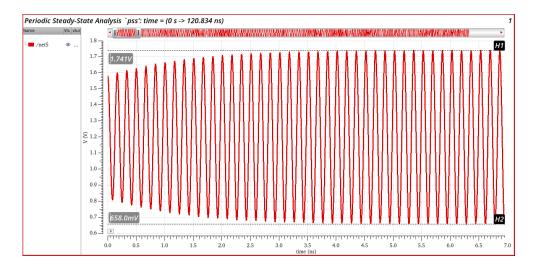


Figure 3: Transient signal at the output node of the VCO.

6 Frequency Tuning

Figure 4 shows the variation of oscillator frequency as V_{tune} varies from 0 to 1.2V. We can observe a tuning range of about **28MHz**. We also observe a max K_{VCO} value of around **61MHz/V**, which is within the required specification. From the schematic simulations, we can observe that the oscillation frequency at $V_{TUNE} = 0.6V$ is around **6.3GHz** and the tuning range is higher, at around **32MHz**. This is because of parasitic capacitances considered in the post-layout simulations, which reduce the oscillation frequency and the tuning range.

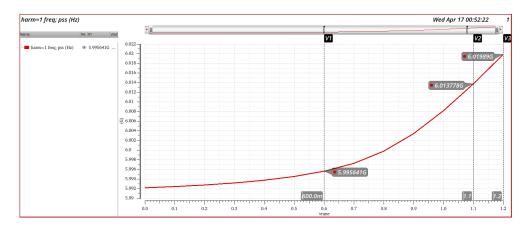


Figure 4: Plot for frequency as V_{tune} varies in post-layout simulations.

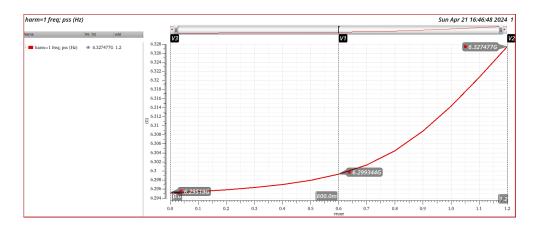


Figure 5: Plot for frequency as V_{tune} varies in schematic simulations.

7 Phase Noise

Figure 6 shows the phase noise (in dBc) for the designed LNA circuit. The phase noise at a relative frequency of 1MHz is close to -117dBc/Hz, which meets the desired specification.

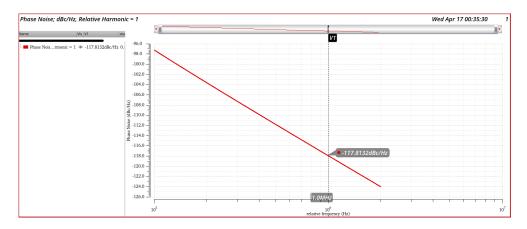


Figure 6: Phase Noise (in dBc) for the designed VCO circuit.

8 Variation with V_{DD}

Figure 7 shows the variation of oscillator frequency as V_{tune} varies from 1.0 to 1.4V. As we increase V_{DD} , the V_{GS} of the varactors M_2 , M_3 increases. Due to this the capacitance of the varactors also increases as we increase V_{DD} . This leads to a decrease in the oscillation frequency.

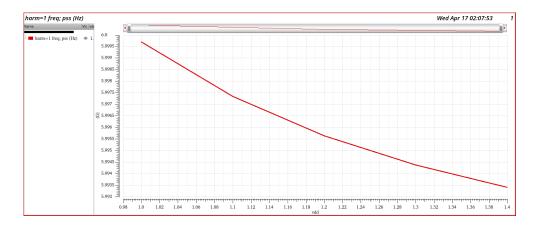


Figure 7: Plot for frequency as V_{DD} varies.