Anubhav Bhatla

☑ bhatlaanubhav2001@gmail.com • ♦ anubhavbhatla.github.io

Research Interests

Computer Systems and Architecture, Hardware Security

Education

Indian Institute of Technology Bombay

Integrated B.Tech + M.Tech in Electrical Engineering (Electronic Systems) Minor Degree in Computer Science and Engineering

Scholastic Achievements

• Awarded Undergraduate Research Award by IIT Bombay for excellence in research and development (2023)

• Secured All India Rank 266 in Joint Entrance Exam, JEE (Advanced) among 160 thousand candidates (2020)

• Acquired an All India Rank 490 in Joint Entrance Exam, JEE (Mains) among 1.1 million candidates (2020)

• Awarded the Kishore Vaigyanak Protsahan Yojana (KVPY) fellowship with All India Rank 337 (2018)

• Secured Top 250 rank among 300 thousand candidates in the Bits Pilani entrance examination (2020)

(2020) • Received **Certificate of Merit** for exemplary performance in Class XII CBSE Board examinations

Publication

A. Bhatla, Navneet, B. Panda, The Maya Cache: A Storage-efficient and Secure Fully-associative Last-level Cache Accepted at the International Symposium on Computer Architecture (ISCA'24)

Research & Work Experience

Hardware-efficient Secure Cache Design	(Jan. 2023 - Nov. 2023)		
Prof. Biswabandan Panda, IIT Bombay	Research Project		
• Proposed Maya, a secure fully-associative last-level cache design which provides complete sec cache attacks while saving storage, power, energy, and area compared to a non-secure base	urity against eviction-based eline		
\odot Designed and simulated a security model for the Maya cache to ensure no set-associative ev	\dot{t} ictions occur in 10^{16} years		
• Implemented the Maya cache design on the ChampSim simulator to obtain a 2% perfor non-secure baseline, and performed analysis for sensitivity to the number of cores and cac	mance gain compared to a the size		
Secure Cache-line Reallocation	(Jul. 2022 - Nov. 2022)		
Prof. Virendra Singh, IIT Bombay	EE691: R&D Project		
• Studied and implemented the PASS-P , Utility-based Dynamic Cache Partitioning (UCP), and static cache partitioning techniques for multi-core systems on the Sniper multi-core simulator & analyzed results for different cache configurations			
\odot Conducted thorough analysis of performance, sensitivity, re-allocated blocks and dead block	ks for different benchmarks		
\odot Proposed & implemented modifications to PASS-P using Sniper simulator, reducing dead block percentage by over 10%			
Sliced-Out-of-Order Core Implementations	(Jul. 2023 - Nov. 2023)		
Prof. Virendra Singh, IIT Bombay EE748: Advanced Topics i	$n\ Computer\ Architecture$		
\odot Reviewed literature on sliced-OoO cores which add minimal components on InO cores for MLP extraction			
• Implemented the backward dependency algorithm and hardware structures proposed by the state-of-the-art Load-Slice core using the Gem5 simulator and extended it to implement the modifications suggested by Freeflow core			
Embedded Software Intern	(May 2023 - Jul. 2023)		
Texas Instruments India, Bangalore	Summer Internship		
• Created a driver monitoring application for the AM62Ax Sitara processor using the GStreamer media framework			
\odot Modified the existing GS treamer pipelines to enable stacking of multiple DNN models req	uired for the application		
• Analyzed the boot flow of various processors and created a boot loader porting guide for the Sitara AM62x processor			
\odot Reviewed existing documentation and Linux examples for the AM62x & suggested changes	to improve user experience		

(Nov. 2020 - Present) CPI: 9.07/10

Teaching **Teaching Assistant** (Jan. 2023 - Apr. 2023) Prof. Virendra Singh, IIT Bombay EE309: Microprocessors • Served as an undergraduate teaching assistant for a batch of 200+ Electrical Engineering sophomores • Tasked with the responsibility of conducting **doubt-solving sessions** and academically mentoring students **Academic Projects** Superscalar Processor Design (Jul. 2022 - Nov. 2022) Prof. Virendra Singh, IIT Bombay CS683: Advanced Computer Architecture • Designed 2-way OoO Superscalar processor with a Turing-complete instruction set architecture of 17 instructions • Implemented key components: Reservation Station, Reorder Buffer, Execution pipelines & Memory system in VHDL • Conducted thorough software testing for all 17 instructions on GHDL and GTKWave simulations using a testbench • Created an assembler and a boot loader in Python to dump user instructions into the memory of the processor EEG Data Acquisition System (Jan. 2023 - Nov. 2023) Prof. Siddharth Tallur, IIT Bombay Supervised Research Exposition & EE344: Electronic Design Lab o Studied the datasheets for various ADCs, voltage regulators, microcontrollers, Wi-Fi modules, and other peripherals • Designed a **24-channel** setup on a **4-laver PCB**, complete with the analog front-end, **daisy-chaining** for the ADCs, analog and digital power regulators, and peripheral interfacing using two SPI buses present on the microcontroller • Implemented a 4-channel modular signal acquisition setup along with a 3D-printed headgear for demo purposes • Received the Best Project Award out of 60+ teams for exemplary performance throughout the duration of the project VLSI Circuit Design (Jul. 2022 - Nov. 2022) Prof. Dinesh Sharma, IIT Bombay EE671: VLSI Design o Designed logic gates using CMOS, pseudo-NMOS, CVSL and CPL design styles, and analyzed output characteristics • Created a 16-bit Brent Kung logarithmic fast adder in VHDL and validated the design using ModelSim simulations • Utilized the Dadda Reduction Algorithm to optimize the efficiency of a 16-bit Multiply and Accumulate circuit Low Power OTA Design with RC Compensation (Jul. 2023 - Nov. 2023) Prof. Rajesh Zele, IIT Bombay EE618: CMOS Analog VLSI Design • Designed and implemented a low-power 2-stage Operational Transconductance Amplifier with RC Compensation using Cadence to attain 50 dB gain, unity gain frequency of 108MHz & phase margin of 67.4° • Attained slew rate of 163 V/µs, 1% settling time of 6.84 ns and 69.1 dB CMRR, within 0.22mW power budget (Jul. 2022 - Nov. 2022) **VLSI** Circuit Partitioning Prof. Virendra Singh, IIT Bombay EE677: Foundation of VLSI CAD • Studied and implemented graph partitioning algorithms and heuristics such as the Kernighan-Lin Algorithm, Clustering Based Heuristic, and Hagen Kahng EIG Algorithm used for efficient VLSI circuit partitioning • Performed comparative performance analysis & visualization of the algorithms using matplotlib and **networkx** libraries **CMOS Implementation of Low Power Equi-Prop System** (Jul. 2023 - Nov. 2023)

- Prof. Udayan Ganguly, IIT Bombay
- Modelled activity of spiking neurons like **Izhikevich** and **Hodgkin-Huxley** to determine energy cost of a spike
- Implemented the Spiking Equilibrium Propagation algorithm in 45nm CMOS technology using LTSpice
- \circ Achieved a total power consumption of $82.7\mu W$ with only $8.8\mu W$ power consumed by the synapse circuit

Pipelined Processor Design

Pipelined Processor Design	(Jan. 2022 - Apr. 2022)
Prof. Virendra Singh, IIT Bombay	EE309: Microprocessors
\odot Designed and implemented a 16-bit, 6-stage pipeline processor, capable of efficiently ru	nning a total of 17 instructions
$_{\odot}$ One of the few teams to optimize the processor using Hazard mitigation, Forwarding &	& Branch prediction techniques
\odot Performed software testing for all the instructions using Intel Quartus Environment and	d the ${\bf ModelSim}$ HDL simulator
Valet Parking Bot	(Jan. 2023 - Apr. 2023)
Prof. Paritosh Pandya and Prof. Kavi Arya, IIT Bombay	CS684: Embedded Systems
• Interfaced tracker sensors, proximity sensors, and position encoders using the Arduino	board present on the Alphabot

• Implemented and tested algorithms for line following, obstacle avoidance, and parking using the **Heptagon** language

• Programmed the controller in Embedded C to set up sensors & motor drivers, and interface with the Heptagon code

EE746: Neuromorphic Engineering

$_{\odot}$ Performed various benchmark simulations on the GPGPU-Sim simulat	or and carefully analyzed the outputs received
Operating Systems	(May 2022 - Jul. 2022)
Maths and Physics Club, IIT Bombay	Summer of Science
o Studied various Scheduling policies, Process APIs, and Context switch	ing used to facilitate CPU Virtualization

o Studi sed to facilitate CPU Virtualization • Covered different Memory APIs, Segmentation, Paging, TLBs, and Swapping in context of Memory Virtualization

• Studied and reviewed the SIMT Core, Memory systems and the programming model related to GP-GPU architecture • Reviewed literature about analyzing and leveraging a Decoupled LLC design and implementing it on GPGPU-Sim

• Performed EDA on the charging, discharging and impedance cycles for Li-ion batteries using NASA's PCoE Datasets • Understood and tested various models such as SVR, Multilayer Perceptron, LSTM, and various Boosting Algorithms

• Acquired the knowledge of Finite-state machines and the methodology for implementing them using D-FlipFlops • Implemented a 4-bit Sequence Generator with D-FlipFlops using sequential and behavioral modelling in VHDL • Performed software testing using Quartus simulations and hardware testing using Scanchain on the Krypton board

• Designed and tested a two-party, password-secure ATM capable of taking action inputs from keyboard using UART • Implemented a reaction timer in Assembly to display the time it takes for the user to respond to a stimulus (in ms) • Developed a subroutine capable of generating voltage waveforms corresponding to music note frequencies using timers \odot Interfaced LM35 sensor with μ C using serial peripheral interfacing to monitor & display real-time ambient temperature

Technical Skills

Reading Projects General Purpose GPUs

Prof. Virendra Singh, IIT Bombay

C, C++, VHDL, Verilog, Python, Assembly, Heptagon Languages Intel Quartus, Autodesk Fusion 360, GStreamer, Cadence Virtuoso, GHDL, Keil μ Vision, Software MATLAB, LTSpice, Ngspice, ArduinoIDE, GNU Radio, LATEX, AutoCAD, Solidworks Simulators ChampSim, gem5, Sniper, GPGPU-Sim

Courses Undertaken

Predicting the RUL of EV Batteries

Prof. Maryam Shojaei Baghini, IIT Bombay

Prof. Saravanan Vijaykumaran, IIT Bombay

Prof. Amit Sethi, IIT Bombay

Microprocessor Implementations

Digital Circuit Design

Computer Architecture: Advanced Topics in Computer Architecture, Advanced Computer Architecture, Microprocessors

Hardware Design: VLSI Design, Algorithmic Design of Digital Systems, CMOS Analog VLSI Design, Electronic Design Lab, Neuromorphic Engineering, Foundation of VLSI CAD

Computer Science: Data Structure & Algorithms, Design & Analysis of Algorithms, Principles of Data & System Security, Embedded Systems

Electrical Engineering: Communication Networks, Electronic Devices, Signal Processing, Control Systems Miscellaneous: Intro to Machine Learning, Economics, Sociology, Quantum Physics & Application, Biology

Extracurriculars

0	Completed one year of training under the National Cadet Corps, IIT Bombay	(2021)
0	Awarded Special Mention out of 82 students in LATEX boot camp conducted by UGAC, IIT Bombay	(2021)

• Designed & assembled remote-controlled plane for **RC Plane Competition** held by Aeromodelling Club (2021)

• Volunteered as a guide for the EE lab tour organized by Alumni & Corporate Engagement Assoc. (2022)

(Jul. 2021 - Nov. 2021) DS203: Programming for Data Science • Achieved an R2 score of 98.09 for estimating the RUL of EV Lithium batteries using the XGBoost regression model

(Jul. 2021 - Nov. 2021)

(Jan. 2022 - Apr. 2022) EE337: Microprocessors Lab

(May 2022 - Jul. 2022)

Research Project

EE214: Digital Circuits Lab